
CENTRAL BANK OF ICELAND

WORKING PAPERS No. 35

Computational Efficiency in Bayesian Model
and Variable Selection

by
Jana Eklund

Sune Karlsson

May 2007

CENTRAL BANK OF ICELAND

Economics Department

Central Bank of Iceland Working Papers are published by the Economics Department of the Central Bank
of Iceland. The views expressed in them are those of their authors and not necessarily the views of the
Central Bank of Iceland.

Also available on the Central Bank of Iceland World Wide Web site (http://www.sedlabanki.is)

All rights reserved. May be reproduced or translated provided the source is stated.
ISSN: 1028-9445

Computational Efficiency in Bayesian Model and
Variable Selection∗

Jana Eklund
Bank of England†

Sune Karlsson

Örebro University‡

April 23, 2007

Abstract

This paper is concerned with the efficient implementation of Bayesian model
averaging (BMA) and Bayesian variable selection, when the number of candidate
variables and models is large, and estimation of posterior model probabilities must
be based on a subset of the models. Efficient implementation is concerned with two
issues: the efficiency of the MCMC algorithm itself and efficient computation of the
quantities needed to obtain a draw from the MCMC algorithm. For the first aspect,
it is desirable that the chain moves well and quickly through the model space and
takes draws from regions with high probabilities. In this context there is a natural
trade-off between local moves, which make use of the current parameter values to
propose plausible values for model parameters, and more global transitions, which
potentially allow exploration of the distribution of interest in fewer steps, but where
each step is more computationally intensive. We assess the convergence properties
of simple samplers based on local moves and some recently proposed algorithms
intended to improve on the basic samplers. For the second aspect, efficient compu-
tation within the sampler, we focus on the important case of linear models where
the computations essentially reduce to least squares calculations. When the chain
makes local moves, adding or dropping a variable, substantial gains in efficiency can
be made by updating the previous least squares solution.
Keywords: Bayesian Model Averaging, Sweep operator, Cholesky decomposition,
QR decomposition, Swendsen-Wang algorithm
JEL-codes: C110, C150, C520, C630

∗The views expressed in this paper are those of the authors, and not necessarily those of the Bank of
England. The work on this paper was carried out while the first author was affiliated with the Stockholm
School of Economics.

†Jana.Eklund@bankofengland.co.uk
‡Sune.Karlsson@esi.oru.se

1

1 Introduction

Bayesian model averaging (BMA) was introduced by Leamer (1978) some 30 years ago.
It has grown in popularity in the last decade as new theoretical developments have be-
come available and computer power easily accessible. Hoeting, Madigan, Raftery, and
Volinsky (1999) provide a comprehensive historical overview and summary of the litera-
ture on this topic. BMA has been applied successfully to many statistical model classes,
including linear regression, Raftery, Madigan, and Hoeting (1997), Fernández, Ley, and
Steel (2001); discrete graphical models, Madigan and Raftery (1994); survival analysis,
Raftery, Madigan, and Volinsky (1995); factor-based models, Koop and Potter (2004);
and large macroeconomic panels, Jacobson and Karlsson (2004), in all cases improving
predictive performance in the presence of model uncertainty.

At first glance, Bayesian model averaging is straightforward to implement: one needs
the marginal distribution of the data, the prior probabilities of the models and the pos-
terior distribution of the quantity of interest conditional on each model. In linear regres-
sion, for nicely behaved prior distributions, all these components are available in closed
form. Even if one has the closed form, another problem is that in many applications, the
model space is too large to allow enumeration of all models, and beyond 20-25 variables,
see George and McCulloch (1997), estimation of posterior model probabilities and BMA
must be based on a sample of models.

For a variable selection problem in a linear regression setting with 50 potential ex-
planatory variables, implying 250 ≈ 1015 different models, the CPU time for a brute force
attack would be close to 5 millennia with our fastest algorithm on a standard desktop
PC. While this can obviously be speeded up by throwing more hardware at the problem
and the computations are trivial to parallelize, the computational burden is simply too
large. Assuming a 100-fold increase in processor speed it would still take over 17 days
to evaluate all the models on a 1024 node cluster, which clearly puts a brute force ap-
proach beyond everyday use. Markov chain Monte Carlo (MCMC) methods provide a
stochastic method of obtaining a sample from the model posterior distributions. For the
commonly used linear regression models with uninformative priors when there is a wealth
of potential predictors, these methods have to be run sufficiently long in order to achieve
satisfactory level of convergence. It is thus important to be able to evaluate the models
directly by an analytical marginal likelihood, or indirectly by generating pseudo random
numbers from the posterior distribution, in an efficient manner. It is of equal importance
that the MCMC scheme is well designed and moves quickly through the model space.

This paper investigates these issues in the context of linear regression models. Algo-
rithms for solving least squares problems and various MCMC algorithms for exploring the
model space are evaluated both in terms of speed and accuracy.

The paper is organized as follows, the next section 2 introduces Bayesian model aver-
aging and sets the stage for the remainder of the paper. Section 3 reviews methods for
solving linear normal equations and Section 4 evaluates the speed and accuracy of the
algorithms. Section 5 describes several Markov chain samplers and Section 6 evaluates
their performance. Finally, Section 7 concludes.

2

2 Bayesian model averaging and linear regression

Bayesian model averaging and model selection depends on the ability to calculate posterior
model probabilities

p (Mi|y) =
m (y|Mi) p (Mi)∑M

j=1 m (y|Mj) p (Mj)
, (1)

and in particular the marginal likelihoods

m (y|Mi) =

∫
L (y|θi,Mi) p (θi|Mi) dθi, (2)

for the considered models Mi, i = 1, . . . , M. If M is not too large and the models are
tractable in the sense that the marginal likelihoods are available in closed form, this can
be solved by brute force calculation of all the posterior model probabilities. In the large
scale problems motivating the current paper, brute force calculations are not feasible even
when the marginal likelihood is available in closed form.

Instead, Markov chain Monte Carlo methods are used to estimate the posterior model
probabilities. These are typically variations on the reversible jump MCMC (RJMCMC)
scheme developed by Green (1995). A typical RJMCMC algorithm, and the basis for
all the algorithms considered in this paper, is given as Algorithm 1. The Markov chain
moves between models and converges to the posterior model probabilities under general
conditions, and the output can be used to estimate the posterior model probabilities after
a suitable burn-in. With the very large model sets considered here, it is clear that the
chain can not visit all, or even a majority, of the models in a reasonable amount of time.
It is thus important that the chain moves well through the model space and finds the
models with high posterior probabilities.1 The output of the chain can then be taken
as an estimate of the (normalized) posterior probabilities for the visited models. When
the marginal likelihoods are available in closed form, the exact posterior probabilities,
conditional on the set of visited models, can be calculated. Besides being more accurate
than the relative frequencies from the chain, this can also be used as a check of the
convergence properties of the chain.

The way the chain moves through the model space is largely determined by the type of
moves allowed and their probabilities, or in terms of Algorithm 1, the jump distribution
j(M′|M). Let γ be a binary vector with γj = 1 indicating inclusion and γj = 0 exclusion
of variable j in a variable selection problem. A basic implementation of the RJMCMC
algorithm for variable selection would use simple, local, model changing moves:

• Add/Drop Draw an integer j from a uniform distribution on 1, . . . , N and flip the
value of γj. This adds or drops variable j from the model. This gives j(M′|M) =
j(M|M′) = 1/N .

• Swap Select an index i at random from {i : γi = 1}, an index j from {j : γj = 0} and
set γi = 0, γj = 1. This replaces variable i with variable j. The jump probabilities
are j(M′|M) = j(M|M′) = 1/k(N − k), where k is the number of variables in the
model. This replaces variable i with variable j.

1The capture-recapture technique proposed by George and McCulloch (1997) can be used to estimate
the fraction of the total posterior probability accounted for by the chain.

3

Algorithm 1 Reversible jump Markov chain Monte Carlo

Suppose that the Markov chain is at model M, having parameters θM, where θM has
dimension dim (θM) .

A: Marginal likelihood is not available in closed form

1. Propose a jump from model M to a new model M′ with probability j(M′|M).

2. Generate a vector u (which can have a different dimension than θM′) from a
specified proposal density q (u|θM,M,M′) .

3. Set (θM′ ,u′) = gM,M′ (θM,u), where gM,M′ is a specified invertible function.
Hence dim (θM) + dim (u) = dim (θM′) + dim (u′). Note that gM,M′ = g−1

M′,M.

4. Accept the proposed move with probability

α = min

{
1,

L (y|θM′,M′) p (θM′|M′) p (M′) j (M|M′)
L (y|θM,M) p (θM|M) p (M) j (M′|M)

× q (u′|θM′ ,M′,M)

q (u|θM,M,M′)

∣∣∣∣∂gM,M′ (θM,u)

∂ (θM,u)

∣∣∣∣} . (3)

5. Set M = M′ if the move is accepted and stay at M otherwise.

B: Marginal likelihood is available in closed form
When the marginal likelihood is available in closed form the acceptance probabil-

ity (3) can be simplified substantially by employing the fiction that the proposal
distribution for the parameters is the posterior distribution, q (u|θM,M,M′) is the
posterior p (θM′|y,M′) . The Jacobian is then unity and the acceptance probability
simplifies to

α = min

{
1,

m (y|M′) p (M′) j (M|M′)
m (y|M) p (M) j (M′|M)

}
. (4)

Clearly steps 2 and 3 above are then unnecessary and the algorithm simplifies to

1. Propose a jump from model M to a new model M′ with probability j(M′|M).

2. Accept the move with probability (4) otherwise stay at the current model.

4

Using only the Add/Drop move yields the Markov chain Monte Carlo model composition
(MC)3 algorithm of Madigan and York (1995). The Swap move is used in conjunction
with the Add/Drop by, among others; Denison, Mallick, and Smith (1998), and Jacobson
and Karlsson (2004).

Moves like Add/Drop and Swap are attractive since they are very easy to implement,
but their simple nature might cause the chain to mix badly and converge slowly. Con-
sequently a number of alternative schemes has been proposed with the aim of speeding
up convergence, in particular for the common situation, where there is a high degree of
multicollinearity between potential explanatory variables. However, little is known about
the relative merits of these sampling schemes, and one aim of this paper is to evaluate
them against a common set of benchmarks. There are two important aspects which we
focus on:

1. How quickly will the algorithm account for all but a negligible portion of the total
posterior probability?

2. How quickly will the algorithm converge to the posterior distribution over the (vis-
ited) models?

In general, the first item will be easier to satisfy, and is needed with models where the
marginal likelihood is available in closed form and exact posterior model probabilities can
be calculated for the visited models. The second might require many more steps of the
Markov chain and is needed in order to estimate the posterior model probabilities from
the output of the chain.

Linear regression is an important special case where the marginal likelihood is available
in closed form for suitable prior distributions. The calculation of the marginal likelihood
essentially reduces to solving a least squares problem. For example, with the default prior
proposed by Fernández, Ley, and Steel (2001) the marginal likelihood is given by

m (y|M) ∝ (c + 1)−(k+1)/2

(
c · RSS + TSS

c + 1

)−T/2

, (5)

where RSS is the residual sum of squares from a least squares fit and TSS the (corrected)
total sum of squares and c is a tuning constant.

The simplified version B of Algorithm 1 applies in this case, which eases the computa-
tional burden considerably, but computational efficiency is still important. In many cases
it might be needed to run the chain for 5 million steps or more. Scaling up our benchmark
this can take as much as 4 hours when using a standard OLS routine to solve the OLS
problem. But this is, as many authors have noted, obviously wasteful since the proposed
model is a minor variation on the current model. Algorithms that update the current
model rather than redoing all the calculations can reduce the time needed by as much as
85% compared to otherwise optimized algorithms. While promising increased speed, there
is a potential cost in the form of loss of numerical accuracy due to accumulated round-off
errors. We evaluate the speed and accuracy of a number of algorithms for updating OLS
estimates when variables are added to or dropped from a model.

It is obvious that the RJMCMC scheme involves small changes between models, with
the move types discussed above. This is also to a large extent the case with the more
complex updating schemes evaluated in Section 5 and we expect similar savings in compu-
tational time. There are clearly similar benefits when calculating the marginal likelihoods
by brute force since the models can be enumerated by the binary indicator vector γ.

5

3 Solving least squares problems

Consider the linear model
y = Xβ + ε, (6)

where y is a (T × 1) vector, X is a (T × k) matrix of explanatory variables, with T ≥ k,
and β is a (k × 1) vector of unknown parameters. A basic computational problem in
regression analysis is to obtain the solution to the normal equations

X′Xβ = X′y. (7)

The representation of the solution as β̂ = (X′X)−1 X′y is mostly a notational or theo-
retical convenience. In practice this is almost never solved by first computing the inverse
and then the product. Instead least squares solvers are based on a factorization A = BC,
where B and C are non-singular and easily invertible, for example triangular or orthog-
onal matrices. The most commonly used factorization is probably the QR factorization,
which is considered to have good numerical properties. The Cholesky decomposition is
also commonly used, but is in general considered to be more susceptible to round-off er-
rors. Other algorithms that can be used include singular value decomposition and the LU
factorization. The latter two are not considered here, because they are difficult to update
or are relatively inefficient. We will instead include the Sweep operator in our comparison
since it is relatively efficient and eminently suited to calculating successive least squares
estimates for models that differ by a few explanatory variables. To our knowledge this is
the first time the Sweep operator is considered in this context.

Table 1 gives a general impression of the efficiency of these algorithms as least squares
solvers. The table gives the leading terms in the number of floating point operations (flop)
needed for the different steps in order to solve for β̂ and calculate the residual sum of
squares. It is clear that there is little difference for moderate size problems and that the
advantage of the Cholesky decomposition and the Sweep operator increases with T . The
increased saving in computations is due to these algorithms operating on X′X rather than
X. This is also a great advantage when repeatedly solving related least squares problems
since X′X, X′y and y′y can be precomputed, and the Cholesky decomposition and the
Sweep operator become O (k3) algorithms, whereas the QR decomposition is O (Tk2).2

In what follows, we review the algorithms and show how they can be used to update
least squares solutions when variables are dropped from or added to a model.3 In addition
to theoretical predictions about their numerical efficiency based on flop counts, we also
evaluate the efficiency and accuracy of the algorithms in scenarios designed to mimic
the sequence of computations in MCMC-based variable selection and BMA exercises. It
should be noted that other implementations of the algorithms might be more numerically
accurate. In particular, we do not use pivoting with the Cholesky and QR decompositions
since this makes updating more complicated.

2The QR decomposition can be applied to X′X, but this requires about 4 times as much calculations
as a Cholesky decomposition.

3The exposition draws on Golub and van Loan (1996) and the reader is referred to this book for
additional background.

6

Table 1 Order of floating point operations for OLS

Operation Cholesky Sweep QR (Householder)

X′X,X′y,y′y Tk2/2 Tk2/2 -

Factor k3/3 - 2Tk2 − 2k3/3

Calculate
Q′y

- - 4Tk − 2k2

Sweep - 3k3/2 -

Solve for β̂ k2 - k2

Calculate
RSS

4k + k2 - 2 (T − k)

Overall order Tk2/2 + k3/3 Tk2/2 + 3k3/2 2Tk2 − 2k3/3

3.1 QR decomposition

The QR decomposition operates directly on the (T × k) matrix

X = QR = Q1R1, (8)

decomposing it into a (T × T) orthogonal matrix Q =
[
Q1 Q2

]
and R =

[
R′

1 O′]′,
where R1 is a (k × k) upper triangular matrix and O a ((T − k) × k) null matrix. The
decomposition X = Q1R1 is a so-called thin factorization. The normal equations reduce
to

R′
1R1β̂ = R′

1Q
′
1y (9)

R1β̂ = Q′
1y,

which is trivial to solve due to the triangularity of R1. The residual sum of squares can
be obtained by summing the squares of the vector Q′

2y.
The QR decomposition can alternatively be applied on an augmented matrix

A =
[
X y

]
= Q∗R∗. (10)

R1 is then the leading (k × k) submatrix of R∗ and Q′
1y can be found in the first k rows

of the last (k + 1) column of R∗. The square of the last diagonal element of R∗ is the
residual sum of squares. In this way the multiplication Q′y is not necessary and the
calculation time is reduced.

Methods for calculating the QR decomposition include Householder reflections, Givens
rotations, and Gram-Schmidt orthogonalization.

3.1.1 QR decomposition by Householder reflections

A Householder reflection is a (m × m) symmetric, and orthogonal matrix of the form

H = I − 2

u′u
uu′, (11)

where u is a (m × 1) Householder vector defined as

u = x + sgn (x1) ‖x‖2 e1, (12)

7

where x is a non-zero (m × 1) vector, e1 is the first vector of an identity matrix, ‖ · ‖2

denotes the Euclidean norm, and sgn (x1) is the sign of the first element in x.
Using the Householder reflections it is easy to transform a non zero vector

x =
(
x1, x2, x3, . . . , xm

)′
(13)

into a vector
x̃H =

(
x̃H1, 0, 0, . . . , 0

)′
, (14)

thus introducing zeros on a grand scale.
Let H1 be the (T × T) Householder matrix that sets the elements below the diagonal

of the first column of X to zero. Denote the resulting matrix as X1 = H1X. Next consider
the second column of X1. The elements below the diagonal can be set to zero by applying
a ((T − 1) × (T − 1)) Householder matrix H̃2 to the last T − 1 rows or, equivalently,

premultiplying X1 by H2 = diag
(
1, H̃2

)
. Continuing in this fashion and noting that Hj

only operates on the lower right T − j + 1 submatrix from the previous step, we obtain
R as

R = HkHk−1 . . .H2H1X, (15)

and the orthogonal matrix Q is given by

Q = H1H2 . . .Hk−1Hk. (16)

In practice Q is rarely needed, and Q′y can be calculated alongside R as Q′y =
HkHk−1 . . .H2H1y, which is an O (Tk) operation, compared to accumulating Q and
explicitly calculating Q′y, which are O (T 2k) and O (T 2), respectively. Our algorithm,
denoted as House, uses the former approach. It also factors X rather than

[
X y

]
, since

the latter would complicate the updating procedure discussed next. The Householder
routines are based on the LINPACK subroutines DQRDC and DQRSL. See Dongarra,
Bunch, Moler, and Stewart (1979) for details.

Updating QR decomposition using Householder reflections

The vectors u needed to form Hj can be stored efficiently4 and the Householder reflections
are easily recreated. This, together with the fact that a Householder reflection requires
much less work than a full matrix product, makes a simple algorithm for adding or deleting
columns from X available.

A column z is simply added to X by applying the Householder reflections H1, . . . ,Hk

in turn, which forms Q′z. Next, elements k + 2 to T of Q′z are zeroed with Hk+1, and
the first k + 1 elements of the result are appended to R1 as column k + 1 in the upper
triangle of X. The vector u defining Hk+1 is stored below the diagonal and the previously
stored Q′y is premultiplied with Hk+1.

To remove column j, 1 ≤ j ≤ k, from X, the reflections for columns i = k, k − 1, . . . , j
are first undone by premultiplying the previously saved Q′y and columns i+1 to k of R1

with Hi and restoring the elements on or below the diagonal of column i of X from the
saved u if i > j. Columns j + 1 to k are then shifted left and new Householder matrices
Hj, . . . ,Hk−1 are used to zero the elements below the diagonal and update Q′y.

A swap of variables is implemented by first removing the column in question and then
adding the new variable as the last column k.

4In practice, R1 overwrites the upper triangle of X, the last T − j elements of u are stored below the
diagonal in column j and the first element in an auxiliary vector.

8

Table 2 Order of floating point operations for OLS updates

Add Drop (average) Swap

HouseUp 4Tk − k2 4Tk2/3− 2k3/3 4Tk2/3− 2k3/3

GGSUp 4Tk 3Tk + k2 11Tk + k2

Cholesky k3/3 + 3k2/2 k3/3 − k2/3 k3/3 + k2

Sweep 3N2/2 3N2/2 3N2

The leading terms of the flop count for this algorithm, denoted as HouseUp, is given
in Table 4.2. While this algorithm provides an efficient way of adding a variable to the
model it is quite expensive to remove a variable. A much more efficient way of dropping
variables is available using Givens rotations, which can be used to selectively zero elements
in a matrix.

3.1.2 QR decomposition by Givens rotations

The Givens rotation method, also known as Jacobi rotations, is defined by the (m × m)
matrix G

G (i, k, φ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c · · · s · · · 0
...

...
. . .

...
...

0 · · · −s · · · c · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
i

k

, (17)

i k

where c = cos (φ) , and s = sin (φ) for some angle φ. Premultiplication by G (i, k, φ)′

amounts to a counterclockwise rotation of φ radians in the (i, k) coordinate plane. By
choosing φ to satisfy

cos (φ) =
xi

‖x‖2

=
xi√

x2
i + x2

k

, (18)

sin (φ) =
xk

‖x‖2

=
−xk√
x2

i + x2
k

, (19)

for a (m × 1) vector x, the elements of x̃ = G (i, k, φ)′ x can be obtained as

x̃j =

⎧⎨⎩
cxi − sxk j = i

0 j = k
xj j �= i, k.

(20)

That is, element k of x is zeroed by applying the Givens rotation matrix. In practice
the rotations are typically applied to rows i and i + 1, and we refer to a Givens rotation
matrix that zeroes element i + 1 of column j in a matrix as Gi,j. Note that the product
G′

i,jX only operates on rows i and i + 1 of X.

9

The QR factorization of X can be calculated by applying a series of Givens rotations.
First, the T − 1 elements below the diagonal of column 1 are zeroed with GT−1,1 through
G1,1 yielding

X1 = G′
1,1 . . .G′

T−1,1X. (21)

The T − 2 elements below the diagonal in the second column of the matrix X1 are zeroed
by applying GT−1,2 through G2,2 and so on for the remaining columns. This yields

R = G′
k,k . . .G′

T−1,kG
′
k−1,k−1 . . .G′

T−1,k−1G
′
k−2,k−2 . . .G′

T−1,1X (22)

and
Q = GT−1,1GT−2,1 . . .G1,1GT−1,2 . . .G2,2 . . .Gk,k. (23)

This factorization algorithm is O (k2 (3T − k)) and less efficient than using Householder
matrices. A variation on Givens rotations known as Fast Givens or Modified Givens
is of the same order as using Householder matrices, but the maintenance of a vector
of scaling constants as well as occasional rescaling is required. Hanson and Hopkins
(2004) evaluate the relative performance of Givens and Modified Givens rotations, and
find that it is impossible to predict which will perform better on a given hardware/compiler
combination.

Deleting a column using Givens rotations

Assume that we have the thin QR factorization

X = Q1R1, (24)

and delete column i in the matrix X. Denote this new matrix as X̃. Deleting the i-th
column of R1 gives

R̃1 = Q′
1X̃ =

[
R1,1 T1

0 T2

]
, (25)

where R1,1 is a ((i − 1) × (i − 1)) upper triangular matrix, T1 is a rectangular ((i − 1) × (k − i))
matrix and T2 is a (k − i + 1) × (k − i) upper Hessenberg matrix5. The unwanted sub-
diagonal elements r̃i+1,i, . . . , r̃k,k−1, present in T2, can be zeroed by applying a sequence

of Givens rotations to R̃1 and form the new

R1 = G′
k−1,k−1G

′
k−2,k−2 · · ·G′

i,iR̃1.

Q′y is updated similarly by performing the same sequence of Givens rotations and Q can,
if needed, be accumulated by postmultiplying with the Givens matrices.

These are O (3Tk + k2) operations and considerably more efficient than the Householder-
based algorithm for deleting a column. This algorithm for deleting columns is, however,
difficult to combine with the quite efficient approach of adding columns using Householder
reflections.

5In an upper Hessenberg matrix all elements below the first subdiagonal are equal to zero.

10

Adding a column using Givens rotations

The standard textbook treatment of algorithms for adding a column to X assumes that
the full decomposition X = QR is available. Inserting a column z at position j of X gives

X∗ =
(
x1, . . . , xj−1, z, xj, . . . , xk

)
. (26)

Premultiplying by Q′ produces

Q′X∗ =
(
Q′x1, . . . , Q′xj−1, Q′z, Q′xj, . . . , Q′xN

)
= R∗, (27)

which is R with Q′z inserted at position j. R∗ is upper triangular except for the j-th
column. Applying Givens rotations to zero the elements below the diagonal in column j
reduces R∗ to upper Hessenberg form. The unwanted elements r∗j+2,j+1, . . . , r

∗
k+2,k+1 are

then zeroed with a series of Givens rotations. Q′y (and Q) can be updated in parallel
using the same sequence of Givens rotations. This algorithm is efficient if it is cheap to
form Q′z.

There is a substantial penalty for using a Householder reflection to zero the elements
below the diagonal in column j since this turns all the elements below the diagonal in
columns j + 1, . . . , k + 1 into non-zero elements, which in turn will have to be zeroed.
There is, of course, no penalty if z is appended to X as column k+1 rather than inserting
it as an interior column j ≤ k. The Householder updating algorithm takes advantage
of this and forms Q′z directly by applying a small number of Householder reflections,
rather than maintaining the (T × T) matrix Q and calculating Q′z as a matrix product.
A similar level of efficiency can be achieved with Givens rotations if a limited number of
rotations are needed. However, the use of these algorithms in the settings outlined in the
previous section causes the number of rotations to grow without bound with the number
of updates of the least squares solution. We are thus reduced to maintaining a full Q
matrix and calculating the matrix product Q′z, which turns the step of adding a column
into an O (T 2k) operation.

There is thus a trade off. The Householder updating algorithm limits the number of
reflections by undoing them in the delete step, which makes an effective add step possible.
The Givens-based delete step is much more efficient than the Householder delete step, but
the number of rotations grows without bounds, which leads to an inefficient add step.

3.1.3 Gram-Schmidt orthogonalization

Gram-Schmidt orthogonalization is essentially an algorithm for appending columns, which
has several advantages in addition to being possible to combine with the efficient Givens-
based delete step. It is sufficient to maintain the (T × k) matrix Q1 instead of a full
Q since only Q′

1z and not Q′z is needed for the update. The use of Gram-Schmidt
orthogonalization as a tool for adding columns is due to Daniel, Gragg, Kaufman, and
Stewart (1976), and our implementation is based on the Fortran code in Reichel and
Gragg (1990).

Suppose we have the thin QR factorization X = Q1R1 and add a column z to X to
form (26). We then have

X∗ =
[
Q1 z

] [R1,1 0 R1,2

0′ 1 0′

]
. (28)

11

Next, use the Gram-Schmidt orthogonalization procedure to find a (T × 1) vector q, a
(k × 1) vector r, and a scalar ρ that satisfy

[
Q1 z

]
=
[
Q1 q

] [I r
0′ ρ

]
, (29)

under the conditions that Q′
1q = 0 and q′q = 1. The last column on the right hand side

of (29) equals z = Q1r + ρq, which premultiplied by Q′
1, gives the vector

r = Q′
1z. (30)

Setting z∗ = z − Q1r = ρq and using q′q = 1 we have

ρ = z∗′z∗, (31)

q =
1

ρ
z∗. (32)

Combining (28) and (29) yields

X∗ =
[
Q1 q

] [R1,1 r R1,2

0′ ρ 0′

]
= Q∗

1R
∗
1 (33)

and R∗
1 can be reduced to upper triangular form by a series of Givens rotations. We

always append z as the last, k + 1, column of X, thus no rotations are needed and the
algorithm is O (4Tk) in this case.

It is possible that the Gram-Schmidt procedure (30) yields a solution q that is not
orthogonal to Q. In this case reorthogonalization can be used, by simply setting z = z∗

and applying (30) - (32) again. Daniel, Gragg, Kaufman, and Stewart (1976) provide an
error analysis indicating that the Gram-Schmidt procedure with reorthogonalization has
good numerical properties.

Our algorithm, abbreviated as GGSUp, combines the Givens rotation-based procedure
for deleting columns and the Gram-Schmidt procedure for adding columns. A swap
of columns is achieved by first removing the column in question and then adding the
new column as the last column k. Since only Q1 is maintained the residuals must be
calculated explicitly after solving the least squares problem in order to obtain the residual
sum of squares. In addition, Q′

1y is calculated directly as a matrix product rather than
continuously updating the product.

3.2 Cholesky decomposition

The Cholesky factorizations decomposes a (k × k) symmetric, positive definite matrix
A = X′X into a product of a lower triangular matrix L and its transpose L′,

A = X′X = LL′. (34)

The solution to the normal equations is then obtained by solving two triangular equations
systems

Lξ = X′y, (35)

L′β = ξ. (36)

12

The residual sum of squares is calculated using the identity RSS = y′y−y′X (X′X)−1 X′y,
where y′X (X′X)−1 X′y is obtained as a by-product of solving the equations system (36).

As already noted, a great benefit of the Cholesky decomposition is that X′X and
X′y can be precomputed for the full (T × N) data matrix and the algorithm is then
independent of T , when repeatedly solving least squares problems.

The Cholesky routines are based on the Press, Teukolsky, Vetterling, and Flannery
(1992) subroutines CHOLDC and CHOLSL.

3.2.1 Updating the Cholesky decomposition

Assume that the Cholesky decomposition (34) has been obtained. When a variable is
added to a model, the modified matrix and its decomposition are given as

A∗ =

⎡⎣ A11 aj A12

a′
j ajj α′

j

A21 αj A22

⎤⎦ =

⎡⎣ L11 0 0
l′j ljj 0
L21 λj L22

⎤⎦⎡⎣ L′
11 lj L′

21

0 ljj λ′
j

0 0 L′
22

⎤⎦ . (37)

The updated decomposition is found first by solving

lj = L−1
11 aj, (38)

ljj =
√

ajj − l′jlj, (39)

λj =
1

ljj
(αj − L21ljj) , (40)

and then decomposing the lower right corner A22 as usual, i.e. by using expressions (39)-
(40). This is the inner-product version of the factorization. See Golub and van Loan
(1996) for the outer-product alternative. Deleting a column j from a model is equivalent
to decomposing the lower right corner A22. When swapping two variables, the variable
added to the model simply takes the position of the variable being removed and the
update as described above is carried out. When only the Add step is performed, the
corresponding products are always appended as the last row and column, respectively.

3.3 The reversible sweep operator

The sweep operator was designed by Beaton (1964) as a tool for inverting symmetric
matrices. As Goodnight (1979) points out:

“The importance of the sweep operator in statistical computing is not so
much that it is an inversion technique, but rather that it is a conceptual tool
to understanding the least squares process.”

Goodnight also provides a review of its use, including: ordinary least squares, two-stage
and three-stage least squares, nonlinear least squares, multivariate analysis of variance,
regressions by leaps and bounds, stepwise regression, and partial correlation.

The details of the Sweep operator are given as Algorithm 2. Applying the sweep
operator to the first N columns of the data matrix

A =

[
X′X X′y
y′X y′y

]
(41)

13

Algorithm 2 The reversible upper triangular sweep operator

Define an auxiliary vector v with initial values v = (v1, . . . , vN) = (1, 1, . . . , 1) indicating
that all variables are unswept. If variable i is swept then we set vi = −vi. Choose a
tolerance δ > 0 to guard against numerical problems caused by near non-singularity. The
following steps sweep variable k.

1. Return if akk ≤ δ and vk = 1.

2. Let η = akk.

3. Set

ζ =

{
akj η−1, for each j = 1, 2, . . . , k − 1,
vj vk ajk η−1, for each j = k + 1, . . . , N.

4. Set

ξ =

{
aik, for each i = j, j + 1 . . . , k − 1,
vi vk aki, for each i = k + 1, . . . , N.

5. Calculate
aij = aij − ζξ.

6. Set

akj = −akj η−1, for each j = 1, . . . , k,

aik = aik η−1, for each i = k, . . . , N.

7. Finally, set

akk = η−1,

vk = −vk.

results in a matrix

AS =

[
(X′X)−1 (X′X)−1 X′y

−y′X (X′X)−1 y′y − y′X (X′X)−1 X′y

]
=

[
(X′X)−1 β̂

−β̂′ RSS

]
, (42)

since RSS = y′y − β̂′X′y.
The estimates of β, the residual sum of squares and the inverse of X′X can therefore

be obtained by using simple computational operations. Note that y and the variables in
X used to form the matrix A are assumed to be centred. The matrix X′X is thus the
sums of squares and cross product matrix (SSCP). The ((N + 1) × (N + 1)) matrix A is
also a SSCP matrix, with element aN+1,N+1 being the corrected total sum of squares.

The time taken to perform the sweep operations may be reduced by taking into ac-
count the symmetry of the matrix (42). The elements below the main diagonal may be

14

constructed as

aij =

{ −aji if variable i or variable j has been swept,
aji otherwise.

(43)

Two properties of the sweep operator are extremely useful when repeatedly solving
closely related least squares problems:

1. It is not necessary to perform the sweep of the pivots in any particular order to
obtain the inverse,

2. Sweep operations are reversible, that is, the status of a matrix that existed prior to
a sweep on a particular column can be reestablished by repeating a sweep operation
on the same column. The reverse sweeps do not need to be performed in the same
order in which the forward steps were originally performed.

In this context the matrix (41) is formed using the full (T × N) data matrix and the
algorithm is O (N2) and independent of both T and k.

To guarantee the reversibility of the Algorithm 2 in the case when dependencies be-
tween explanatory variables exist, Goodnight (1979) suggests to sweep the diagonal ele-
ment akk only if its value is greater than some tolerance, δ, defined as

δ =

{
δ0 · TSS, if TSS > 0
δ0, otherwise,

(44)

with δ0 ∈ [10−8, 10−12]. In this way the critical information that defines variable’s depen-
dency is preserved.

4 Numerical accuracy and computational efficiency

This section examines the numerical accuracy and efficiency of the algorithms in a setting
designed to closely resemble the sequence of computations encountered in Bayesian vari-
able selection and model averaging exercises. To summarize, the algorithms6 included in
the evaluation are:

OLS the IMSL subroutine DRLSE
House QR decomposition using Householder reflections
HouseUp Updating the QR decomposition using Householder reflections
GGSUp Updating the QR decomposition using Givens rotations and Gram-

Schmidt orthogonalization
Chol Cholesky decomposition
CholUp Updating the Cholesky decomposition
Sweep Updating the least squares solution using the Sweep operator

While Tables 1 and 2 give a good indication of the speed, one can expect from the
different algorithms a rough flop count is only part of the story. Other issues such as
memory access patterns are at least as important and much more difficult to evaluate

6All algorithms are programmed in Fortran 95 and compiled with Compaq Visual Fortran 6.6C using
default compiler settings.

15

using theoretical arguments. An empirical evaluation of the relative performance is thus
needed.

Numerical accuracy is, of course, of utmost importance, it is of no use to have a fast al-
gorithm if it produces misleading results. When evaluating the numerical accuracy we use
the IMSL (Visual Numerics, Inc. (1994)) subroutine DRLSE for OLS as the benchmark.
This routine performs an orthogonal reduction of the matrix

[
X y

]
to upper triangular

form using Fast Givens transformations.
We generate datasets with N = 25, 50 and 100 variables for three different sample

sizes T = 100, 250 and 400.
The design of the experiment is based on Fernández, Ley, and Steel (2001). A matrix

of 15 predictors X(T×15) is generated, where the first 10 random variables, x1, . . . ,x10, are
i.i.d. standard normal and the additional five variables are constructed according to

(x11, . . . ,x15) = (x1, . . . ,x5)
(

0.3 0.5 0.7 0.9 1.1
)′

ι + E, (45)

where ι is a (1 × 5) vector of ones and E is a (T × 5) matrix of i.i.d. standard nor-
mals. This produces a correlation between the first five and the last five predictors. The
dependent variable is generated as

yt = 4 + 2x1,t − x5,t + 1.5x7,t + x11,t + 0.5x13,t + σεt, (46)

where the disturbances εt are i.i.d. standard normal and σ = 2.5. To obtain the desired
dataset size the remaining N − 15 variables are generated as i.i.d. standard normal.

In all cases the explanatory variables are centred and standardized prior to running
the experiments. For each dataset we attempt to approximate the behaviour of a RJM-
CMC scheme like Algorithm 1 when the true model size is k = 5, 10, 15 or 20 explanatory
variables. A specific average model size over the pseudo-MCMC run is achieved by con-
trolling the manner in which the variables are added to or removed from the model. This
process starts at a selected model size k, and follows a sequence of steps: swap, add, swap,
drop, swap, drop, swap, add, swap, add, swap, drop, etc. For the smallest model size this
produces the following sequence of model sizes: 5,6,6,5,5,4,4,5,5,6,6,5, In this manner
25% of the MCMC steps add a variable, 25% drop a variable and remaining 50% are
swapping a variable. The ’Markov chain’ is run for 50 000 steps and all the algorithms
considered visit the same set of models in the same order.

4.1 Results

4.1.1 Speed

For each combination of the number of potential explanatory variables, N, number of
observations, T, and model size, k, the timing experiments were run 5 times and the
average CPU time calculated.7

The timings include overhead for generating the proposed models and keeping track
of the number of visits to a particular model and are thus representative of the actual
time requirements for a RJMCMC algorithm. In order to isolate the contribution of the
least squares algorithms we also report on the CPU time for the overhead. It should be
noted that the time needed to solve the least squares problem is only a small fraction of
the total time for the fastest algorithms.

7The experiments were run on an IBM desktop PC running Windows XP SP2 with a Pentium 4 530
processor (3 GHz), 800 MHz memory buss, 1 MB L2 cache and Intel 915G chipset.

16

Figure 1 CPU time (approximation in seconds) for 50 000 steps of a Markov chain for
different combinations of k,N and T .

17

Tables B.1 - B.3 report the times for all the algorithms. Figure 1 shows the CPU
time in seconds for all algorithms except OLS, which by far is the slowest algorithm for
all combinations of k, N and T . It is not surprising that OLS is the slowest algorithm,
since it is designed for general use with checks of the data, treatment of missing values
etc. that is absent from the other algorithms. In general, increasing the dataset size N
has the same effect on all algorithms. Except for the Sweep operator the increase in CPU
time can be traced to the increased overhead that is due to the larger number of possible
models, and that more distinct models are proposed (and visited) with larger N. For the
Sweep operator we see a larger increase in the CPU time than for the other algorithms,
reflecting the fact that it always operates on a (N ×N) matrix irrespective of the current
model size.

Increasing model size does not influence the Sweep operator and only slightly the
Cholesky decomposition and Cholesky update. The concave form for the dataset size
N = 25, showing dependence on k for these 3 methods, is caused by the fact that there
are fewer models in the model set for k = 5 and k = 20 and thus less overhead than for
the remaining two model sizes.

The House, the HouseUp, and GGSUp algorithms all depend on k with House the most
sensitive and GGSUp the least affected. This is in rough agreement with the predictions
from Tables 1 and 2.

The Cholesky decomposition, its update, and the Sweep operator are naturally not
affected by the sample size T since they operate on the matrix X′X. Of the remaining
algorithms GGSUp is the least affected followed by HouseUp and House. Again this is as
predicted by the flop counts in Tables 1 and 2.

Clearly the Sweep operator, Cholesky, and the Cholesky update algorithms are the
most efficient. The Sweep operator is preferred if the number of variables, N, is not too
large relative to the average model size, k. The Cholesky update is faster than Cholesky
except for the smallest model size, k = 5.

4.1.2 Accuracy

For each of the algorithms the values of the estimated beta parameters and the value of
the residual sum of squares are recorded at every s = 100 steps, giving in total 500 control
points. Tables 3 - 4 report the average number of correct significant digits relative to the
benchmark algorithm, OLS, for RSS and β̂, based on the 500 control points. For β̂ this
is an average over both the number of parameters in the model at a particular control
point and the control points. That is, the average number of correct digits for β̂ is given
by

ζβ̂ =
1

500

500∑
j=1

1

kj

kj∑
i=1

∣∣∣∣ log
∣∣∣ β̂i−β̂OLS

i

β̂OLS
i

∣∣∣ ∣∣∣∣. (47)

With the increasing sample size T , the number of correct digits is decreasing for all
algorithms. The algorithm that is closest to the benchmark is the Cholesky decomposition
and its update. The Givens Gram-Schmidt algorithm, however, has the highest number
of correct digits for the model parameters. The worst performing algorithm is the Sweep
operator with a difference of around one digit.

Figures A.1 - A.3 provide an example of the relative numerical accuracy for RSS at
each of the control points for dataset with N = 50 variables and average model size k = 10.
All the algorithms, except the Sweep operator, are oscillating round zero with a constant

18

Table 3 Average number of correct significant digits for RSS.

N k House HouseUp GGSUp Chol CholUp Sweep
T = 100

5 15.58 15.59 15.57 15.69 15.69 14.78
25 10 15.57 15.57 15.55 15.66 15.66 14.30

15 15.56 15.58 15.58 15.66 15.66 14.27
20 15.59 15.55 15.56 15.68 15.67 13.98
5 15.57 15.56 15.58 15.67 15.67 14.14

50 10 15.58 15.57 15.53 15.68 15.68 14.73
15 15.56 15.55 15.58 15.67 15.68 14.34
20 15.57 15.54 15.58 15.66 15.66 14.06
5 15.57 15.56 15.56 15.67 15.67 14.27

100 10 15.57 15.56 15.55 15.67 15.67 14.66
15 15.56 15.56 15.56 15.65 15.65 13.94
20 15.57 15.56 15.56 15.64 15.63 14.41

T = 250
5 15.49 15.49 15.49 15.46 15.46 14.63

25 10 15.47 15.47 15.46 15.39 15.39 14.27
15 15.48 15.44 15.47 15.39 15.39 14.08
20 15.49 15.46 15.48 15.43 15.43 14.45
5 15.50 15.45 15.46 15.43 15.42 14.40

50 10 15.46 15.45 15.44 15.40 15.40 14.32
15 15.46 15.51 15.45 15.37 15.37 14.73
20 15.49 15.49 15.45 15.41 15.41 14.50
5 15.48 15.51 15.47 15.42 15.42 14.84

100 10 15.49 15.49 15.45 15.42 15.42 14.33
15 15.45 15.47 15.45 15.41 15.41 14.07
20 15.48 15.47 15.46 15.40 15.41 14.54

T = 400
5 15.38 15.35 15.34 15.49 15.49 14.13

25 10 15.33 15.35 15.33 15.47 15.47 14.76
15 15.36 15.36 15.35 15.49 15.49 13.99
20 15.33 15.33 15.32 15.44 15.44 14.72
5 15.31 15.33 15.34 15.43 15.43 14.77

50 10 15.34 15.34 15.33 15.46 15.46 14.23
15 15.35 15.33 15.37 15.47 15.47 14.18
20 15.34 15.37 15.33 15.49 15.50 14.74
5 15.32 15.32 15.33 15.47 15.47 14.49

100 10 15.34 15.32 15.37 15.46 15.46 14.30
15 15.34 15.31 15.32 15.42 15.43 14.17
20 15.37 15.35 15.34 15.49 15.48 14.62

Average 15.46 15.46 15.45 15.51 15.51 14.39

19

Table 4 Average number of correct significant digits for estimated model parameters.

N k House HouseUp GGSUp Chol CholUp Sweep
T = 100

5 15.05 14.99 15.13 15.09 15.11 14.12
25 10 14.98 14.85 15.05 15.00 15.00 13.99

15 14.94 14.73 14.99 14.88 14.88 14.01
20 14.88 14.64 14.94 14.78 14.77 13.95
5 15.06 15.02 15.12 15.13 15.13 14.02

50 10 14.99 14.91 15.07 15.07 15.08 13.96
15 14.95 14.79 15.01 15.01 15.01 13.90
20 14.92 14.71 14.97 14.96 14.96 13.94
5 15.06 15.00 15.12 15.12 15.13 14.08

100 10 15.02 14.93 15.08 15.08 15.09 13.94
15 14.97 14.81 15.01 15.02 15.02 13.89
20 14.95 14.73 14.97 14.98 14.98 13.87

T = 250
5 14.77 14.73 14.83 14.83 14.83 14.06

25 10 14.70 14.60 14.79 14.75 14.74 14.00
15 14.70 14.53 14.78 14.70 14.69 13.98
20 14.68 14.43 14.76 14.60 14.59 13.92
5 14.89 14.83 14.94 14.93 14.93 14.16

50 10 14.85 14.77 14.92 14.92 14.92 14.13
15 14.83 14.72 14.89 14.87 14.87 14.02
20 14.82 14.66 14.89 14.85 14.85 14.06
5 14.89 14.87 14.97 14.97 14.97 14.19

100 10 14.87 14.81 14.93 14.94 14.94 14.11
15 14.85 14.75 14.91 14.91 14.91 14.05
20 14.83 14.70 14.90 14.90 14.90 14.03

T = 400
5 14.80 14.78 14.88 14.84 14.84 14.06

25 10 14.73 14.64 14.83 14.75 14.75 13.98
15 14.70 14.57 14.80 14.70 14.69 14.07
20 14.71 14.49 14.81 14.64 14.62 14.03
5 14.84 14.81 14.90 14.88 14.88 14.10

50 10 14.75 14.69 14.85 14.83 14.83 14.08
15 14.72 14.62 14.81 14.79 14.79 14.00
20 14.72 14.58 14.80 14.77 14.77 14.02
5 14.82 14.82 14.88 14.86 14.86 14.16

100 10 14.80 14.74 14.87 14.86 14.85 14.10
15 14.77 14.69 14.86 14.83 14.84 14.08
20 14.76 14.65 14.83 14.81 14.81 14.01

Average 14.85 14.74 14.92 14.88 14.88 14.03

20

variance, which is increasing with the sample size. The Sweep operator oscillates round
zero for T = 100 with a growing variance, but diverges for the other sample sizes. However,
for about the first 70 points, i.e. round 7 000 Markov chain steps, it does not perform
much worse than the remaining algorithms. A similar level of accuracy could thus be
obtained with the Sweep operator by resetting the crossproduct matrix and reinitializing
the calculations after some fixed number of updates.

5 Methods for model space exploration

The posterior distribution of different possible models can be also viewed as a distribution
of a set of binary strings or as a binary spatial field. The posterior model probabilities
(1) can be then written as

p (Mi|y) = p (γMi
|y) ∝ m (y|γMi

) p (γMi
) , (48)

where γMi
= (γ1, . . . , γN)′ is a binary vector, with γk = 1 indicating inclusion and γk = 0

omission of variable k from model Mi.
When evaluating the different MCMC algorithms we will take the basic RJMCMC

algorithm 1 with both Add/Drop and Swap moves as our base case. The jump probabil-
ities for the Add/Drop and Swap moves are as described in Section 2 and we randomize
between the Add/Drop and Swap moves, proposing to swap variables with probability
1/2. We refer to this as the RJ ADS algorithm. We also consider a simplified version
with only the Add/Drop move, i.e. the probability of proposing a swap is zero. This is
the same as the (MC)3 algorithm of Madigan and York (1995) and we refer to this as the
RJ AD algorithm.

5.1 Gibbs and Metropolis-Hastings samplers

When the marginal likelihood is available in closed form a Gibbs sampler can be used to
simulate the posterior distribution of the binary vector γ directly. The Gibbs sampler
is obtained as a special case of the basic RJMCMC Algorithm 1B by selecting the jump
distribution as the conditional posterior

p
(
γ′

i|y, γ\i
)

=
m
(
y|γ′

i, γ\i
)
p
(
γ′

i|γ\i
)∑1

j=0 m
(
y|γi = j, γ\i

)
p
(
γi = j|γ\i

) (49)

when updating component i with current value γi to a (possibly) different value γ′
i. This

proposes to stay with probability p
(
γi|y, γ\i

)
= 1−p

(
γ′

i|y, γ\i
)
, and move with probability

1 − p
(
γi|y, γ\i

)
= p

(
1 − γi|y, γ\i

)
. The acceptance probability (4) clearly simplifies to

1. If in addition the index i to update is drawn with probability 1/N it is clear that
this is analogous to the basic RJMCMC algorithm with only the Add/Drop move. The
probability of moving to a new model is, however, larger for the RJMCMC scheme than for
the Gibbs sampler, and it follows from Peskun (1973) that RJMCMC with only Add/Drop
moves will mix better and is statistically more efficient.

In practice the Gibbs sampler is usually implemented with a systematic scan updating
all the variables, as in Smith and Kohn (1996), rather than drawing a single variable to
update at random. In this case the Gibbs sampler corresponds to a thinned RJMCMC
sampler where every N th draw is retained.

21

Algorithm 3 Gibbs sampling scheme for variable selection

Suppose that the Markov chain is at model M represented by the binary vector γ.

1. For i = 1, . . . , N , draw γ′
i from the conditional posterior p

(
γ′

i|y, γ\i
)

2. Set the new model to M′ as given by γ ′.

Algorithm 4 Kohn, Smith and Chan Metropolis-Hastings sampling scheme with prior
for γ as a proposal probability

Suppose that the Markov chain is at model M represented by the binary vector γ.

1. For i = 1, . . . , N ,

i. Draw γ′
i from p

(
γi|γ\i

)
ii. Accept the proposal with probability

α =
m
(
y| γ′

i, γ\i
)

m
(
y| γi, γ\i

) . (50)

If γ′
i = γi no likelihood evaluation is needed.

2. Set the new model to M′ as given by γ ′.

Kohn, Smith, and Chan (2001) propose several sampling schemes designed to reduce
the computational burden by avoiding unnecessary evaluations of the marginal likelihood.
The Gibbs sampler and the basic RJMCMC scheme each require that m (y|γ ′) is evalu-
ated in every step but in many, perhaps most, cases we will remain at the same model.
In particular, it is likely that an attempt to change γi from 0 to 1 will fail since the total
number of variables, N , is typically large relative to the number of variables in the model.
Here, we consider sampling scheme 2 (SS2) of Kohn, Smith, and Chan (2001) outlined in
Algorithm 4. It reduces the number of evaluations of the marginal likelihood by using the
conditional prior p

(
γi|γ\i

)
as the proposal distribution when considering flipping γi in an

Add/Drop move. If the prior probability p
(
γi = 1|γ\i

)
is small, the proposal will often

be to stay at γi = 0 and a likelihood evaluation is avoided. If, on the other hand, γi = 1,
it is likely that a flip is proposed and the marginal likelihood must be evaluated, but the
situation when γi = 1 should occur relatively less frequently. Kohn, Smith, and Chan
(2001) show that the SS2 scheme is statistically less efficient than the Gibbs sampler, but
required only about 10% as many likelihood evaluations in their application.

The Kohn, Smith, and Chan (2001) idea of reducing the number of likelihood evalua-
tions can also be applied to the RJMCMC sampling scheme by modifying the Add/Drop
move proposal probabilities. Instead of selecting a variable index i with probability 1/N
and proposing to flip γi, we select and index at random and propose to flip the value of γi

with probability p
(
γi = 1|γ\i

)
, and propose to stay with probability p

(
γi = 0|γ\i

)
when

γi = 0. The proposal probabilities for γi = 1 are analogous. With just an Add/Drop
move this is simply a random scan version of the SS2 scheme. For completeness we give

22

Algorithm 5 RJMCMC with KSC proposal probabilities

Suppose that the Markov chain is at model M represented by the binary vector γ with
k variables in the model.

1. With probability δ attempt to add or drop a variable.

Draw an index i = 1, . . . , N with probability 1/N and γ′
i from p

(
γi|γ\i

)
.

The jump probability is j(M′|M) = δp
(
γ′

i|γ\i
)

and the probability of the reverse
jump is j(M|M′) = δp

(
1 − γ′

i|γ\i
)

2. Otherwise attempt to swap two variables.

Select an index i at random from {i : γi = 1}, an index j from {j : γj = 0} and set
γi = 0, γj = 1. This replaces variable i with variable j. The jump probabilities are
j(M′|M) = j(M|M′) = (1 − δ)/k(N − k).

3. Accept the move with probability

α = min

{
1,

m (y|M′) p (M′) j (M|M′)
m (y|M) p (M) j (M′|M)

}
(51)

otherwise stay at the current model.

this as Algorithm 5.
Kohn, Smith, and Chan (2001) also propose versions of SS2 that update blocks of

indices γi rather than a single index. The block schemes turned out to be less statisti-
cally efficient than one at a time updating with little additional computational savings.
Consequently, we will not consider the block updating schemes here. Instead we consider
a recently proposed scheme based on the Swendsen-Wang algorithm where the blocks are
formed dynamically.

5.2 Swendsen-Wang algorithm for Bayesian variable selection

When there are high posterior correlations between components of γ, the usual Markov
chain Monte Carlo methods for exploring the posterior, which update one component
of γ at a time, can mix slowly. Nott and Green (2004) propose in such cases to use
a MCMC algorithm analogous to Swendsen-Wang algorithm for the Ising model8. See
Higdon (1998) for a review of the Swendsen-Wang algorithm.

Nott and Leonte (2004) combine the method of Nott and Green (2004) with a RJM-
CMC to obtain a sampling scheme for Bayesian variable selection in generalized linear
models, which is applicable when the regression coefficients can not be integrated out of
the posterior distribution analytically.

Let v = {vij : 1 ≤ i < j ≤ N} be a collection of auxiliary variables, and βγ be the
subvector of β consisting of nonzero elements. The target distribution of the Markov
chain is

p (βγ, γ,v|y) ∝ p (y|βγ, γ) p (βγ|γ) p (γ) p (v|γ) (52)

8See for example Kindermann R. and J. Laurie Snell (1980): Markov Random Fields and Their
Applications. The American Mathematical Society, Rhode Island.

23

instead of the usual

p (βγ, γ|y) ∝ p (y|βγ, γ) p (βγ|γ) p (γ) . (53)

Adding auxiliary variables can often simplify calculations and lead to improved mixing.
In general, it may be possible to design good sampling algorithms for the distribution
p (βγ, γ,v) more easily then for the distribution p (βγ, γ). One can simulate from the
joint distribution p (βγ, γ,v) and then obtain information about the posterior distribution
on the model parameters by ignoring the simulated values for the auxiliary variables v.
The auxiliary variables do not need to have an immediate interpretation.

The conditional distribution for the auxiliary variables in (52) is

p (v|γ) =

∏
i<j

1
(
0 ≤ vij ≤ exp

(
ψij1 (γi = γj)

))
exp

(∑
i<j

ψij1 (γi = γj)

) , (54)

where 1 (K) is indicator function, that equals 1 if condition K is satisfied and 0 otherwise.
The parameters ψij are interaction parameters and the procedure for determining them
is described in the next section. The conditional distribution (54) makes vij given γ
conditionally independent and uniform on the interval

[
0, exp

(
ψij1 (γi = γj)

)]
.

The auxiliary variables v impose constraints on the value of γ. If ψij > 0 and 1 ≤
vij ≤ exp (ψij), then the condition vij ≤ exp

(
ψij1 (γi = γj)

)
is satisfied if γi = γj. For

ψij < 0 and exp (ψij) ≤ vij ≤ 1, the condition vij ≤ exp
(
ψij1 (γi = γj)

)
is satisfied if

γi �= γj. There are no constraints for γi and γj, if ψij > 0 and 0 ≤ vij < 1, and if ψij < 0
and 0 ≤ vij < exp (ψij). The auxiliary variables define clusters among components of γ
by the constrains γi = γj and γi �= γj. The constraints always have at least one feasible
solution, because they are based on the current value of γ. Let C = C (v) be a cluster
defined by the auxiliary variables and denote by γ (C) the subset of γ corresponding to
the variables in C, and denote by γ

(C̄) the remaining components of γ. The elements of
γ (C) can be updated by flipping their values from zero to one and vice versa.

Using clusters allows to update components of γ in blocks, rather than one or two at a
time. This is very beneficial in situations where predictors are far from orthogonality and
thus the sampling schemes for exploring the posterior distribution work very poorly. Algo-
rithm 6 describes the RJMCMC algorithm 1 extended by the Swendsen-Wang algorithm
for exploring the model space.

5.2.1 Choice of interaction parameters

The choice of interaction parameters is very important, as the auxiliary variables condi-
tionally remove interactions among components of γ. Nott and Green (2004) suggest to
compute the interaction parameters ψij via the expression

ψU
ij = 0.5 ×

⎛⎜⎜⎝ ∑
γi=γj ,

γk=γ∗
k , k �=i,j

log m (y|γ) −
∑

γi �=γj ,
γk=γ∗

k , k �=i,j

log m (y|γ)

⎞⎟⎟⎠ , (57)

24

Algorithm 6 Swendsen-Wang reversible jump Markov chain Monte Carlo

Suppose that the Markov chain is at model M and the interaction parameters ψij have
been calculated. Denote the binary indicator vector for the parameters of the model M
as γ.

1. Generate auxiliary variables v from p (v|γ) .

2. Uniformly select a variable i from the set of possible variables and find the cluster
C containing the variable i .

3. Propose a jump from model M to a new model M′ by setting γ ′ (C) = 1 − γ (C).

4. Accept the proposed move with probability

α = min

{
1,

m (y|γ ′) p (γ ′)
m (y|γ) p (γ)

exp

(∑
i<j

ψij

(
1 (γi = γj) − 1

(
γ′

i = γ′
j

)))}
. (55)

5. Set M = M′ if the move is accepted.

Since γ ′ (C̄) = γ
(C̄) the acceptance probability is simplified to

α = min

⎧⎨⎩1,
m (y|γ ′) p (γ ′)
m (y|γ) p (γ)

exp

⎛⎝∑
(i,j)∂C

ψij

(
1 (γi = γj) − 1

(
γ′

i = γ′
j

))⎞⎠⎫⎬⎭ , (56)

where ∂C = {(i, j) : i < j and either i ∈ C, j /∈ C or i /∈ C, j ∈ C}.
Steps 1 and 2 can be combined, since only the components of v, which determine the
cluster containing γi in step 2, have to be generated.

where γ∗ is set to be a vector of ones. The interaction parameters are then formed as

ψij = cψU
ij1
(∣∣cψU

ij

∣∣ ≥ t
)
, (58)

where c is a scaling factor and t is a threshold parameter. The transformation (58) scales
down the values ψU

ij by a factor of c, and truncates these values to zero if the scaled values
are less than t in magnitude. With γ∗ to be vector of ones, c is chosen so that all the
algorithm interaction parameters lie in the interval [−1, 1], and t is set to 0.1. From the
definition of the auxiliary variables and the constraints conditions it is easily seen that
if the current states for γi and γj are such that a constraint is possible between them at
the next iteration, then the probability of such a constraint is 1− exp (− |ψij|). If |ψij| is
large, this constraint probability will be close to one. If many of the algorithm interaction
parameters are large, the cluster C tends to contain large numbers of variables, and at
least one of the γ in a large cluster will have a value fixed by the likelihood. This means
that any proposal to flip the values in a large cluster is unlikely to be accepted, which
prevents mixing in this sampling scheme. Scaling down the parameters has therefore a
beneficial effect on the performance of the algorithm.

In datasets containing many variables computing all interaction parameters ψij can
be very time consuming. Nott and Green (2004) suggest to reduce the number of pairs
(i, j) for which the interactions parameters have to be calculated by using standard mul-

25

ticollinearity diagnostic, the variance proportions. For linearly independent variables the
interaction parameters are set to zero, and only for variables (i, j) involved in severe linear
dependence they are allowed to be nonzero.

Write X′X = WΛW′ for the eigenvalue decomposition, where Λ is a diagonal matrix
of eigenvalues with diagonal entries λ1, . . . , λN and W = [w1, . . . ,wN] is a orthogonal
matrix with columns given by the eigenvectors w1, . . . ,wN of X′X. The variance of the
estimated parameters, β̂, can be written as

var
(
β̂
)

= σ2 (X′X)
−1

= σ2WΛ−1W′, (59)

and the variance of β̂i is

var
(
β̂i

)
= σ2

N∑
j=1

w2
ij

λj

. (60)

The variance proportion that can be attributed to the eigenvalue λk is

ξki =
w2

ik/λk∑N
j=1 w2

ij/λj

. (61)

If for a given small value of λk both variance proportions ξki and ξkj are large this suggests
that variables i and j are involved in a near linear dependence among the regressors. Nott
and Green suggest to calculate the interaction parameters ψU

ij only for such pairs (i, j),
where both ξki and ξkj are bigger than some cut-off value for some eigenvalue λk. The
interaction parameters are then scaled and truncated as in expression (58). The cut-off
value is set to 0.25 in this paper.

6 Performance of MCMC algorithms

In this section we wish to address the issues outlined in Section 2. The two main questions
are: how quickly a sampler converges to the posterior distribution and how fast does
it account for all but a negligible proportion of the total posterior probabilities. We
investigate these in two experiments based on different designs for the matrix of potential
explanatory variables. The first experiment is the same as the basic design with 15
variables described in Section 4.

The second experiment is more challenging with severe and complicated multicollinear-
ity among potential regressors. It is based on an example originally in George and
McCulloch (1997), and used by others, Nott and Green (2004) and Nott and Leonte
(2004). We simulate 15 variables X(T×15) as follows. First, 16 i.i.d. standard nor-
mal variables, zi, are generated. Then we construct the regressors as xi = zi + 2z16

for i = 1, 3, 5, 8, 9, 10, 12, 13, 14, 15. Furthermore, xi = xi−1 + 0.15zi, for i = 2, 4, 6,
x7 = x8 + x9 − x10 + 0.15z7, and finally x11 = −x12 − x13 + x14 + x15 + 0.15z11. This
leads to a correlation about 0.998 between xi and xi+1 for variables 1, 3 and 5, and strong
linear dependencies among (x7, . . . ,x10) and (x11, . . . ,x15). The true model is

yt = xtβ + σεt, (62)

where

β =
(
1.5 0 1.5 0 1.5 0 1.5 −1.5 0 0 1.5 1.5 1.5 0 0

)′
,

26

the disturbances εt are i.i.d. standard normal, and σ = 2.5. In both experiments we set
T = 250. We generate 100 different datasets for each experiment. We refer to these two
experiments as the FLS and NL experiment, respectively.

In order to assess the performance of the different samplers we test how close the
posterior distribution of the chain is to the exact posterior distribution. Calculating the
exact posterior distribution is trivial for these experiments since the marginal likelihoods
are available in closed form. With only N = 15 predictors in both exercises, and the
constant term always included in the model, exactly 32768 models have to be evaluated.
Using our fastest least squares routine this takes very little time, about 0.2 seconds.

To assess the convergence we use the Kolmogorov-Smirnov (KS) test as one metric.
The KS test is defined as the maximum value of absolute difference between the empir-
ical cumulative distribution function, Sn (x), and the assumed cumulative distribution
function, P (x),

D = max
−∞<x<∞

|Sn (x) − P (x)| , (63)

where n denotes the sample size.
Brooks, Giudici, and Philippe (2003) use the KS test for testing homogeneity of sub-

populations of different chains under the assumption that replicated chains that have
converged generate similar posterior model probability estimates. The use of the KS test
is justified by considering the sample-path of a model indicator, Mi. Brooks, Giudici,
and Philippe point out that the KS test is invariant under reparametrization of x. The
test is however not invariant to model labelling, so the value of D may change with a
different model labelling. On the other hand, the interpretation of the diagnostic plots
over time, in terms of whether or not the simulations are performing well, is generally
invariant across different labelling schemes. The KS test requires continuous variables
to derive an exact distribution, but as Brooks, Giudici, and Philippe also validate, with
sufficiently large number of models, this assumption is valid in an approximate sense. In
the test (63) the realizations of x are replaced by Mi, the model indicator, and n = M ,
the total number of models visited by the Markov chain.

We evaluate the following samplers:

GIBBS Gibbs sampler (Algorithm 3)
KSC Kohn, Smith, and Chan’s (2001) SS2 algorithm (Algorithm 4)
RJ ADS RJMCMC (Algorithm 1) with Add/Drop and Swap moves, as defined

on page 3 and δ = 1/2
RJ AD RJMCMC with Add/Drop step only, δ = 0
RJ KSC ADS RJMCMC with KSC jump proposal, ADS steps, δ = 1/2, (Algorithm

5)
RJ KSC AD RJMCMC with KSC jump proposal, no swap step, δ = 0
SWANG Swendsen-Wang algorithm (Algorithm 6)

6.1 Results

For each sampler and each dataset we run the chain in total for s = 125 000, 250 000,
500 000, 1 000 000 and 2 000 000 steps. We stop the chain after each r = s/5 steps,
giving 5 control points. At the control points we record the output of the chain, i.e.
the KS test statistics are calculated based on the last r steps. After the control point
the chain continues moving form the last visited model M(r)

i , but the count of visited

27

models is discarded. For each s the outcome of the KS tests gives an indication of the
burn-in needed, provided that the ’batch-size’, r, is sufficient to provide a good estimate
of the posterior model probabilities, or at least allow us to visit all but a negligible set
of models. The KS test is carried out both for the exact posterior probabilities based on
visited models by the Markov chain and the relative frequencies from the chain. We refer
to these as exact probabilities and MCMC probabilities, respectively. Tables 5 - 8 report
the number of significant KS tests at significance level α = 0.05.

The results for the ’simple’ FLS experiment do not show any significant differences
among the samplers. All the samplers perform well, and according to the KS test, 25 000
steps of the Markov chain is sufficient for estimating the posterior model probabilities.

Turning to the more complicated NL experiment, we find substantial differences. For
the exact probabilities the Swendsen-Wang sampler produces posterior distributions very
close to the ’true’ distribution already for short chains. It is followed by the RJ KSC
ADS and RJ ADS samplers. It appears that these three algorithms will visit all but
a negligible set of models in 25 000 steps. The next group of algorithms are the Gibbs
sampler and RJ AD where 50 000 draws is sufficient for visiting all the important models.
The chains produced by the KSC and RJ KSC AD algorithms perform worst and 100 000
steps appear to be needed. It is interesting to note the role of the Swap move. Algorithms
with only the Add/Drop move perform badly, whereas the corresponding algorithm with
a Swap move performs quite well. The inferior performance of the algorithms with KSC
type proposals is to some extent expected. It remains to be seen if this is made up for by
savings in computational time.

Turning to Table 8 and the issue of how well the relative frequencies of the visited
models estimate the posterior probabilities, we again find that the Swendsen-Wang sam-
pler performs best. The KS test is unable to reject the null hypothesis that the sampler
has converged after only 25 000 steps. The performance of the Gibbs sampler, RJ ADS,
RJ AD and RJ KSC ADS is similar to each other, these samplers appear to require about
400 000 steps for acceptable results. Again KSC and RJ KSC AD perform worst with
KSC doing somewhat better than RJ KSC AD. For the latter we clearly need more than
400 000 steps of the Markov chain for good estimates of the posterior distribution.

Figures 2(a) and 2(b) plot the average number of steps that each sampler needed to
reach a desired coverage. This is complementary to the results in Tables 5 and 7 and gives
a somewhat more nuanced picture of the FLS experiment. The inferior performance of
the KSC and RJ KSC AD algorithms is now evident for this dataset as well with these
algorithms requiring about twice the number of steps for 99% coverage. For the NL
experiment we again find that Swendsen-Wang performs best followed by RJ ADS with
the Gibbs sampler, RJ AD and RJ KSC ADS in a third group.

This far we have not taken the computational requirements into account. Figures 3(a)
and 3(b) show the average CPU time required for a desired level of coverage. In the FLS
experiment we find that the Swendsen-Wang sampler requires most CPU time for 99%
coverage, and that KSC along with the Gibbs sampler and RJ AD require the least. The
RJ ADS, RJ KSC ADS and RJ KSC AD occupy the middle ground with RJ ADS doing
best of these three algorithms. The speed of the KSC algorithm clearly compensates for
the lack of statistical efficiency in this case. Turning to the NL experiment, we find that
the RJ ADS algorithm requires least CPU time followed by KSC and RJ KSC ADS. The
Gibbs sampler and the Swendsen-Wang algorithm have similar CPU time requirements,
while the RJ AD and RJ KSC AD require most CPU time with RJ KSC AD performing

28

Table 5 Number of significant Kolmogorov-Smirnov tests for exact probabilities, FLS
experiment.

r control step
s 1 2 3 4 5

GIBBS 0 0 0 0 0
KSC 0 0 0 0 0

25 000 RJ ADS 0 0 0 0 0
125 000 RJ AD 0 0 0 0 0

RJ KSC ADS 1 0 0 0 0
RJ KSC AD 0 0 0 0 0
SWANG 1 0 0 0 0

GIBBS 0 0 0 0 0
KSC 0 0 0 0 0

50 000 RJ ADS 0 0 0 0 0
250 000 RJ AD 0 0 0 0 0

RJ KSC ADS 0 0 0 0 0
RJ KSC AD 0 0 0 0 0
SWANG 1 0 0 0 0

GIBBS 0 0 0 0 0
KSC 0 0 0 0 0

100 000 RJ ADS 0 0 0 0 0
500 000 RJ AD 0 0 0 0 0

RJ KSC ADS 0 0 0 0 0
RJ KSC AD 0 0 0 0 0
SWANG 1 0 0 0 0

GIBBS 0 0 0 0 0
KSC 0 0 0 0 0

200 000 RJ ADS 0 0 0 0 0
1 000 000 RJ AD 0 0 0 0 0

RJ KSC ADS 0 0 0 0 0
RJ KSC AD 0 0 0 0 0
SWANG 1 0 0 0 0

GIBBS 0 0 0 0 0
KSC 0 0 0 0 0

400 000 RJ ADS 0 0 0 0 0
2 000 000 RJ AD 0 0 0 0 0

RJ KSC ADS 0 0 0 0 0
RJ KSC AD 0 0 0 0 0
SWANG 0 0 0 0 0

29

Table 6 Number of significant Kolmogorov Smirnov tests for MCMC probabilities, FLS
experiment.

r control step
s 1 2 3 4 5

GIBBS 0 0 0 0 0
KSC 0 2 0 0 0

25 000 RJ ADS 1 0 0 0 0
125 000 RJ AD 0 0 0 0 0

RJ KSC ADS 6 1 3 5 1
RJ KSC AD 0 0 0 0 0
SWANG 1 1 0 0 0

GIBBS 0 0 0 0 0
KSC 1 0 0 0 0

50 000 RJ ADS 0 0 0 0 0
250 000 RJ AD 0 0 0 0 0

RJ KSC ADS 2 0 0 0 2
RJ KSC AD 0 0 0 0 0
SWANG 1 0 0 0 0

GIBBS 0 0 0 0 0
KSC 0 0 0 0 0

100 000 RJ ADS 0 0 0 0 0
500 000 RJ AD 0 0 0 0 0

RJ KSC ADS 0 0 0 0 0
RJ KSC AD 0 0 0 0 0
SWANG 1 0 0 0 0

GIBBS 0 0 0 0 0
KSC 0 0 0 0 0

200 000 RJ ADS 0 0 0 0 0
1 000 000 RJ AD 0 0 0 0 0

RJ KSC ADS 0 0 0 0 0
RJ KSC AD 0 0 0 0 0
SWANG 1 0 0 0 0

GIBBS 0 0 0 0 0
KSC 0 0 0 0 0

400 000 RJ ADS 0 0 0 0 0
2 000 000 RJ AD 0 0 0 0 0

RJ KSC ADS 0 0 0 0 0
RJ KSC AD 0 0 0 0 0
SWANG 0 0 0 0 0

30

Table 7 Number of significant Kolmogorov Smirnov tests for exact probabilities, NL
experiment.

r control step
s 1 2 3 4 5

GIBBS 5 13 15 9 6
KSC 43 24 29 47 46

25 000 RJ ADS 3 0 0 1 0
125 000 RJ AD 14 19 11 2 13

RJ KSC ADS 2 6 1 4 3
RJ KSC AD 51 30 49 52 48
SWANG 0 0 0 0 0

GIBBS 2 0 1 0 0
KSC 3 5 13 3 16

50 000 RJ ADS 4 0 0 0 0
250 000 RJ AD 5 0 6 2 4

RJ KSC ADS 0 0 0 0 0
RJ KSC AD 12 16 28 33 33
SWANG 0 0 0 0 0

GIBBS 1 0 0 0 0
KSC 0 0 4 1 0

100 000 RJ ADS 1 0 0 0 0
500 000 RJ AD 0 0 0 2 0

RJ KSC ADS 1 0 0 0 0
RJ KSC AD 3 16 1 6 0
SWANG 0 0 0 0 0

GIBBS 3 0 0 0 0
KSC 1 0 0 2 0

200 000 RJ ADS 2 0 0 0 0
1 000 000 RJ AD 0 0 0 0 0

RJ KSC ADS 0 0 0 0 0
RJ KSC AD 0 0 0 0 0
SWANG 0 0 0 0 0

GIBBS 0 0 0 0 0
KSC 1 0 0 0 0

400 000 RJ ADS 2 0 0 0 0
2 000 000 RJ AD 0 0 0 0 0

RJ KSC ADS 1 0 0 0 0
RJ KSC AD 0 0 0 0 0
SWANG 0 0 0 0 0

31

Table 8 Number of significant Kolmogorov Smirnov tests for MCMC probabilities, NL
experiment.

r control step
s 1 2 3 4 5

GIBBS 72 55 44 21 56
KSC 51 51 65 47 46

25 000 RJ ADS 38 45 40 36 31
125 000 RJ AD 29 49 49 72 63

RJ KSC ADS 38 37 43 49 35
RJ KSC AD 53 72 74 56 51
SWANG 0 0 0 1 1

GIBBS 55 33 40 22 39
KSC 42 40 22 40 44

50 000 RJ ADS 28 29 20 19 18
250 000 RJ AD 37 59 53 44 52

RJ KSC ADS 28 40 29 26 22
RJ KSC AD 46 50 51 45 47
SWANG 0 0 0 1 0

GIBBS 24 19 32 26 28
KSC 22 17 34 37 40

100 000 RJ ADS 24 12 6 11 16
500 000 RJ AD 30 21 31 26 24

RJ KSC ADS 24 15 22 13 24
RJ KSC AD 39 32 34 24 50
SWANG 0 0 0 0 0

GIBBS 12 20 17 11 12
KSC 7 19 16 15 22

200 000 RJ ADS 9 4 17 11 7
1 000 000 RJ AD 9 12 16 11 27

RJ KSC ADS 11 8 19 17 4
RJ KSC AD 26 21 52 21 24
SWANG 0 0 0 0 0

GIBBS 8 4 2 5 3
KSC 4 6 17 11 16

400 000 RJ ADS 5 9 5 2 2
2 000 000 RJ AD 3 8 2 7 19

RJ KSC ADS 6 4 0 3 5
RJ KSC AD 12 35 19 16 12
SWANG 0 0 0 0 0

32

Figure 2 Average number of MCMC steps to reach model space coverage.

(a) FLS experiment

(b) NL experiment

33

Figure 3 Average CPU time to reach model space coverage.

(a) FLS experiment

(b) NL experiment

34

quite poorly.
The Swendsen-Wang algorithm is clearly a superior sampler among the ones consid-

ered here and it has much to offer. It is, however, relatively complicated to implement
and requires more CPU time. Taking CPU time into account, other algorithms such as
RJ ADS strike a balance between statistical efficiency and computational efficiency and
might be preferable. It should, however, be noted that this is in a setting where the
marginal likelihood is available in closed form and can be evaluated efficiently. For more
complicated models the computational cost of generating a proposal is less important and
the Swendsen-Wang algorithm might be more efficient in terms of computational time.
At the same time this is a case where strategies like KSC, that reduce the number of
likelihood evaluation, can be expected to do well.

7 Conclusions

In this paper, the focus had been on a number of MCMC approaches and various algo-
rithms for solving least squares problems. With large numbers of variables and models,
situations often encountered in Bayesian variable selection or model averaging exercises,
fast calculations of model parameters and efficient search through the model and variable
spaces are desirable.

The efficiency and accuracy of the least squares solvers are analysed from both the-
oretical and empirical perspectives. The results show that using Cholesky and Cholesky
updating decompositions as well as the sweep operator, reduces the computational time
substantially compared to the QR decomposition. The Cholesky decomposition and its
update are also the most accurate algorithms, given the benchmark OLS.

Most MCMC samplers included in the analysis, are local approaches restricting tran-
sitions to adjacent subsets of the model space. The most successful is the reversible jump
Markov chain Monte Carlo algorithm with Add/Drop and Swap moves implemented. This
sampler produces posterior distributions very close to the true distribution and is also
computationally efficient. When there is high dependence among the variables and the
chain is mixing slowly, the Swendsen-Wang algorithm that allows for more global moves,
provides substantial accuracy improvements compared to the local transition samplers.

References

Beaton, A. E. (1964): “The use of Special Matrix Operators in Statistical Calculus,”
Research Bulletin 64-51, Educational Testing Service, Princeton, New Jersey.

Brooks, S. P., P. Giudici, and A. Philippe (2003): “Nonparametric Convergence
Assessment for MCMC Model Selection,” Journal of Computational & Graphical Statis-
tics, 12(1), 1–22.

Daniel, J. W., W. B. Gragg, L. Kaufman, and G. W. Stewart (1976): “Re-
orthogonalization and Stable Algorithms for Updating the Gram-Schmidt QR Factor-
ization,” Mathematics of Computation, 30(136), 772–795.

Denison, D. G. T., B. K. Mallick, and A. F. M. Smith (1998): “Automatic
Bayesian Curve Fitting,” Journal of the Royal Statistical Society B, 60(2), 333–350.

35

Dongarra, J. J., J. R. Bunch, C. B. Moler, and G. W. Stewart (1979): Linpack
Users’ Guide. SIAM, Philadelphia.

Fernández, C., E. Ley, and M. F. Steel (2001): “Benchmark Priors for Bayesian
Model Averaging,” Journal of Econometrics, 100(2), 381–427.

George, E. I., and R. E. McCulloch (1997): “Approaches for Bayesian Variable
Selection,” Statistica Sinica, 7, 339–373.

Golub, G. H., and C. F. van Loan (1996): Matrix Computations. The Johns Hopkins
University Press, Baltimore, 3 edn.

Goodnight, J. H. (1979): “A Tutorial on the Sweep Operator,” The American Statis-
tician, 33(3), 149–158.

Green, P. J. (1995): “Reversible Jump Markov Chain Monte Carlo Computation and
Bayesian Model Determination,” Biometrika, 82(4), 711–732.

Hanson, R. J., and T. Hopkins (2004): “Algorithm 830: Another Visit with Stan-
dard and Modified Givens Transformations and a Remark on Algorithm 539,” ACM
Transactions on Mathematical Software, 30(1), 86–94.

Higdon, D. M. (1998): “Auxiliary Variable Methods for Markov Chain Monte Carlo
with Applications,” Journal of the American Statistical Association, 93(442), 585–595.

Hoeting, J., D. Madigan, A. E. Raftery, and C. Volinsky (1999): “Bayesian
Model Averaging: A Tutorial,” Statistical Science, 14(4), 382–417.

Jacobson, T., and S. Karlsson (2004): “Finding Good Predictors for Inflation: A
Bayesian Model Averaging Approach,” Journal of Forecasting, 23(7), 479–496.

Kohn, R., M. Smith, and D. Chan (2001): “Nonparametric Regression Using Linear
Combinations of Basis Functions,” Statistics and Computing, 11(4), 313–322.

Koop, G., and S. Potter (2004): “Forecasting in Dynamic Factor Models Using
Bayesian Model Averaging,” Econometrics Journal, 7(2), 550–565.

Leamer, E. E. (1978): Specification Searches, Ad hoc Inference with Nonexperimental
Data. John Wiley, New York.

Madigan, D., and A. E. Raftery (1994): “Model Selection and Accounting for Model
Uncertainty in Graphical Models Using Occam’s Window,” Journal of the American
Statistical Association, 89(428), 1535–1546.

Madigan, D., and J. York (1995): “Bayesian Graphical Models for Discrete Data,”
International Statistical Review, 63, 215–232.

Nott, D. J., and P. J. Green (2004): “Bayesian Variable Selection and the Swendsen-
Wang Algorithm,” Journal of Computational & Graphical Statistics, 13(1), 141–157.

Nott, D. J., and D. Leonte (2004): “Sampling Schemes for Bayesian Variable Selec-
tion in Generalized Linear Models,” Journal of Computational & Graphical Statistics,
13(2), 362–382.

36

Peskun, P. H. (1973): “Optimum Monte-Carlo Sampling Using Markov Chains,”
Biometrika, 60(3), 607–612.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (1992):
Numerical Recipes in FORTRAN: The Art of Scientific Computing. Cambridge Uni-
versity Press, New York, NY, USA, 2 edn.

Raftery, A. E., D. Madigan, and J. A. Hoeting (1997): “Bayesian Model Aver-
aging for Linear Regression Models,” Journal of the American Statistical Association,
92(437), 179–191.

Raftery, A. E., D. Madigan, and C. Volinsky (1995): “Accounting for Model
Uncertainty in Survival Analysis Improves Predictive Performance (with Discussion),”
in Bayesian Statistics 5, ed. by J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M.
Smith, pp. 323–349. Oxford University Press, Oxford.

Reichel, L., and W. B. Gragg (1990): “Algorithm 686: FORTRAN Subroutines
for Updating the QR Decomposition,” ACM Transactions on Mathematical Software,
16(4), 369–377.

Smith, M., and R. Kohn (1996): “Nonparametric Regression Using Bayesian Variable
Selection,” Journal of Econometrics, 75(2), 317–343.

Visual Numerics, Inc. (1994): IMSL Fortran Statistical Library, vol. 1.Visual Numer-
ics, Inc., Houston, Texas, 3 edn.

37

Appendix A Figures

Figure A.1 Relative accuracy for RSS, T = 100, N = 50, k = 10.

38

Figure A.2 Relative accuracy for RSS, T = 250, N = 50, k = 10.

39

Figure A.3 Relative accuracy for RSS, T = 400, N = 50, k = 10.

40

Appendix B Tables

Table B.1 CPU time (approximation in seconds) for T = 100.

k
5 10 15 20

OLS 17.56 25.38 32.33 38.91
Householder 4.31 6.62 8.39 9.52
Householder update 4.26 6.17 7.20 7.24

N = 25 Givens Gram-Schmidt update 4.44 5.98 6.35 5.82
Cholesky 3.78 5.16 5.47 4.78
Cholesky update 3.79 5.11 5.31 4.41
Sweep 3.88 5.06 5.06 3.89
Overhead 3.68 4.86 4.86 3.69

OLS 20.21 26.95 33.94 41.74
Householder 6.91 8.18 9.94 12.24
Householder update 6.87 8.13 8.76 10.00

N = 50 Givens Gram-Schmidt update 7.05 7.94 7.83 8.45
Cholesky 6.40 6.70 7.03 7.54
Cholesky update 6.42 6.67 6.87 7.15
Sweep 6.80 6.93 6.94 6.95
Overhead 6.29 6.42 6.43 6.44

OLS 24.26 30.99 38.07 45.61
Householder 10.91 12.55 13.96 16.27
Householder update 10.92 11.72 12.78 14.07

N = 100 Givens Gram-Schmidt update 11.07 11.46 11.82 12.41
Cholesky 10.38 10.67 11.01 11.57
Cholesky update 10.41 10.63 10.86 11.15
Sweep 11.76 11.85 12.23 11.91
Overhead 10.29 10.35 10.38 10.39

41

Table B.2 CPU time (approximation in seconds) for T = 250.

k
5 10 15 20

OLS 37.66 55.38 73.57 91.87
Householder 5.09 9.05 13.30 18.37
Householder update 4.93 7.90 10.32 12.14

N = 25 Givens Gram-Schmidt update 5.34 7.40 8.25 8.61
Cholesky 3.78 5.14 5.47 4.79
Cholesky update 3.80 5.25 5.30 4.41
Sweep 3.87 5.05 5.06 3.89
Overhead 3.69 4.84 4.85 3.69

OLS 40.31 57.52 75.11 95.01
Householder 7.69 10.67 14.93 20.58
Householder update 7.53 9.51 11.92 14.90

N = 50 Givens Gram-Schmidt update 7.95 8.88 9.66 11.10
Cholesky 6.42 6.71 7.14 7.54
Cholesky update 6.43 6.67 6.88 7.15
Sweep 6.80 6.91 6.94 6.95
Overhead 6.29 6.42 6.42 6.45

OLS 44.34 61.18 79.25 98.51
Householder 11.71 14.58 18.82 24.52
Householder update 11.56 13.44 15.87 18.99

N = 100 Givens Gram-Schmidt update 11.96 12.85 13.63 15.02
Cholesky 10.40 10.66 11.01 11.56
Cholesky update 10.41 10.64 10.85 11.15
Sweep 11.77 11.84 11.88 11.90
Overhead 10.30 10.51 10.38 10.39

42

Table B.3 CPU time (approximation in seconds) for T = 400.

k
5 10 15 20

OLS 58.14 86.17 114.64 145.35
Householder 5.86 11.43 18.02 26.07
Householder update 5.59 9.61 13.38 16.96

N = 25 Givens Gram-Schmidt update 6.23 8.79 10.10 11.32
Cholesky 3.78 5.17 5.49 4.78
Cholesky update 3.80 5.12 5.32 4.43
Sweep 3.88 5.08 5.08 3.90
Overhead 3.69 4.88 4.87 3.71

OLS 60.29 87.33 115.85 148.70
Householder 8.45 12.97 19.70 28.77
Householder update 8.20 11.09 14.88 19.67

N = 50 Givens Gram-Schmidt update 8.83 10.24 11.43 13.65
Cholesky 6.41 6.72 7.06 7.56
Cholesky update 6.43 6.68 6.89 7.17
Sweep 6.81 6.93 6.95 6.96
Overhead 6.31 6.42 6.45 6.44

OLS 64.57 91.72 120.01 151.44
Householder 12.51 17.02 23.77 32.88
Householder update 12.26 15.20 19.03 23.96

N = 100 Givens Gram-Schmidt update 12.85 14.17 15.38 17.57
Cholesky 10.41 10.68 11.06 11.57
Cholesky update 10.46 10.66 10.89 11.18
Sweep 11.80 11.89 11.92 11.94
Overhead 10.32 10.37 10.40 10.41

43

Table B.4 Average number of MCMC steps, for r = 400 000 to reach the model space
coverage of

50% 60% 70% 80% 90% 95% 99%
FLS experiment
GIBBS 152 282 503 1 004 3 023 8 436 64 872
KSC 234 468 894 1 752 5 452 14 568 110 120
RJ ADS 182 298 504 979 2 950 7 926 57 484
RJ AD 164 310 544 1 074 3 237 8 307 58 916
RJ KSC ADS 247 408 680 1 307 3 832 10 097 76 931
RJ KSC AD 308 533 980 2 112 6 510 16 551 120 486
SWANG 151 275 515 1 053 3 208 8 321 61 791
NL experiment
GIBBS 2 642 3 473 4 858 8 266 18 689 37 609 136 585
KSC 3 629 5 177 7 998 14 236 33 985 64 726 229 126
RJ ADS 1 235 1 885 2 888 4 831 10 561 21 725 96 238
RJ AD 3 141 4 259 6 176 9 603 19 601 37 378 128 123
RJ KSC ADS 1 690 2 497 3 841 6 348 13 112 27 960 124 725
RJ KSC AD 6 783 8 684 11 670 17 845 34 788 64 678 238 735
SWANG 211 358 639 1 289 3 588 8 754 52 321

Table B.5 CPU time (approximation in seconds) to reach the model space coverage of

50% 60% 70% 80% 90% 95% 99%
FLS experiment
GIBBS 0.0030 0.0042 0.0054 0.0082 0.0183 0.0459 0.3330
KSC 0.0030 0.0037 0.0053 0.0079 0.0197 0.0469 0.3348
RJ ADS 0.0032 0.0043 0.0059 0.0094 0.0221 0.0545 0.3721
RJ AD 0.0030 0.0038 0.0061 0.0090 0.0217 0.0500 0.3343
RJ KSC ADS 0.0036 0.0047 0.0065 0.0101 0.0239 0.0577 0.4173
RJ KSC AD 0.0033 0.0042 0.0059 0.0100 0.0251 0.0593 0.4133
SWANG 0.0037 0.0051 0.0066 0.0105 0.0266 0.0643 0.4517
NL experiment
GIBBS 0.0164 0.0206 0.0273 0.0442 0.0974 0.1923 0.6932
KSC 0.0131 0.0178 0.0264 0.0453 0.1038 0.1956 0.6736
RJ ADS 0.0099 0.0146 0.0211 0.0335 0.0704 0.1418 0.6209
RJ AD 0.0204 0.0269 0.0371 0.0567 0.1121 0.2118 0.7215
RJ KSC ADS 0.0117 0.0164 0.0237 0.0366 0.0736 0.1531 0.6746
RJ KSC AD 0.0257 0.0320 0.0426 0.0631 0.1207 0.2220 0.7782
SWANG 0.0055 0.0073 0.0111 0.0201 0.0505 0.1178 0.6902

44

