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1 Introduction
Different types of panel data:

• Micro-panels where the time-series dimension is small relative to the
cross-section dimension, (individuals, households, firms)

• Macro-panels where the time-series and cross-section dimensions are
of similar magnitude, (regions, countries)

The properties of estimators are likely to depend on the type of panel data.

We consider inference in dynamic micro-panels and the most simple frame-

work for this is a first-order autoregressive panel data model with individual-

specific levels

yit = ρyit−1 + αi + εit for i = 1, ..., N and t = 1, ..., T (1)



This model is widely used in applied econometrics. The reason for this

is that the persistency measured by cross-sectional autocorrelation coef-

ficients (the correlation between a variable and its lagged value) is often

high. An example is income at the individual level.

The persistency can be caused by:

• Units having very different levels
• Strong correlation in the time-series processes (common for all units)

The first-order autogressive model allows for both types of persistency and

inference on the parameters in the model provides information about the

relative importance of the two sources of persistency.



Figure 1: The two types of persistency



2 Heterogeneity

Consider the following more general first-order autoregressive panel data

model

yit = ρiyit−1 + αi + εit for i = 1, ..., N and t = 1, ..., T (2)

where εit is iid across i, t with E (εit) = 0 and E
³
ε2it

´
= σ2iε.

Two extreme versions of the model:

a. The AR-parameter is the same for all units

b. The AR-parameter varies completely at random across units



In version (a) of the model it is possible to make inference on the AR-

parameter. Even though this model is widely used it can be argued that

it does not allow for enough heterogeneity between cross-section units.

Version (b) of the model allows for so much heterogeneity that there

is very little panel data structure in it. Inference on the individual-specific

AR-parameters or the mean AR-parameter is problematic in micro-panels,

see Robertson & Symons (1992) and Pesaran & Smith (1995).



A compromise between the two extreme versions of the model:

Let the AR-parameter vary according to some specific parametric distri-

bution (impose panel data structure) and then estimate the parameters

describing this distribution. This approach used by Alvarez, Browning &

Ejrnæs (2002) and Hsiao, Pesaran & Tahmiscioglu (1999).

The approach suggested in this paper:

The AR-parameter and the variance of the error term vary across units

according to a discrete distribution with only two possible values. This is

formulated in terms of a traditional mixture model. This type of model is

well-known from the analysis of non-linear time-series (switching regres-

sion model, unobserved regime model).



3 The mixture model
For every cross-section unit i = 1, ..., N :

yit = ρ1yit−1 + α1i + ε1,it for t = 1, ..., T with prob. pi

yit = ρ2yit−1 + α2i + ε2,it for t = 1, ..., T with prob. 1− pi
(3)

where ε1,it and ε2,it are iid Normal across i, t with means zero and vari-

ances σ21 and σ
2
2 and they are both independent of yi0, α1i and α2i.

The mixing weights are on logistic form

pi =
exp

¡
γ0Di

¢
1 + exp (γ0Di)

(4)

where Di is a vector of observed individual-specific characteristics.

Important property:

The mixing is done only in the cross-section dimension not in the time-

series dimension. This means that for a given cross-section unit, the

parameters are constant over time.



The individual-specific intercepts:

α1i and α2i come from the same underlying parametric distribution. Here

we assume a distribution which allows for correlation between the individual-

specific effects and the initial value, (the Chamberlain-approach):

(α1i| yi0,Di) ∼ N
³
α1yi0, σ

2
1α

´
where σ21α ≥ 0

(α2i| yi0,Di) ∼ N
³
α2yi0, σ

2
2α

´
where σ22α ≥ 0

Under this assumption, the component density in the mixture model is

the same as in a standard random effects model where the initial value is

included as a regressor in all T equations.



4 Maximum-likelihood estimation

Usually in this type of mixture model the likelihood function tends to in-

finity on the boundary of the parameter space when the variances tend to

zero. The singularity problem can be avoided if there are enough obser-

vations from each component of the mixture model.

Theoretical result:

When the two components are different and there are enough observations

over time (at least 4 observations over time), then the usual result about

the existence and asymptotic properties of the ML estimator holds, (as

N →∞).



In practice the ML estimator is obtained by using the EM-algorithm as

this simplifies the optimization problem.

E-step:

Compute the probability that unit i conditional on the observed values

yi0, ..., yiT belongs to the first component p
∗
i

M-step:

• The parameters in the first component density
³
ρ1, α1, σ

2
1α, σ

2
1ε

´
are

obtained as weighted random effects ML estimators with weights p∗i .

• The parameters in the second component density
³
ρ2, α2, σ

2
2α, σ

2
2ε

´
are obtained as weighted random effects ML estimators with weights

(1− p∗i ).

• The parameters in the mixing weights γ are obtained by a logistic
regression of p∗i on the variables describing the mixing weights.



5 Testing for unit roots
The model is the following:

yit = ρ1yit−1 + α1yi0 + v1,it with prob. pi

yit = ρ2yit−1 + α2yi0 + v2,it with prob. 1− pi

where

E
³
vk,itvk,is

´
=

(
σ2kε + σ2kα for t = s

σ2kα for t 6= s
k = 1, 2

Test the hypothesis that a group of the cross-section units has an AR-

parameter of unity

H01 : ρ2 = 1 α2 = 0 σ22α = 0

HA1 : ρ2 6= 1 or α2 6= 0 or σ22α 6= 0



Time-series interpretation:

The stationary AR without drift against a non-stationary AR without drift

Cross-section interpretation:

The high cross-sectional correlation between yit and yit−1 is coming from
the autoregressive mechanism

The hypothesis is tested by using a LR test statistic which is asymp-

totically χ2 (3).



6 Existing unit root tests

Tests based on pooled estimators of the AR-parameter:

Breitung & Meyer (1994), Harris & Tzavalis (1999), Breitung (1997)

Model: yit = ρyit−1 + (1− ρ)αi + εit
Testing H0 : ρ = 1 against HA : ρ < 1

Tests based on individual-specific statistics:

Im, Pesaran & Shin (2002), Maddala & Wu (1999)

Model: yit = ρiyit−1 + (1− ρi)αi + εit
Testing H0 : ρi = 1 against HA : ρi ≤ 1 with ρi < 1 for a share of units



These tests provide an answer to the question:

Is the AR-parameter equal to unity for all cross-section units?

If the answer is NO there are at least two possible explanations:
• No units with an AR-parameter of unity
• Only a share of units with an AR-parameter of unity

The tests can not distinguish between these two explanations.



7 Application: US annual income

Data: sample drawn from the PSID covering the period 1969-93 according

to the following criteria:

• Males aged 25-55, head of the household
• Positive earnings
• Constant level of education
• Log real earnings between 8.5 and 12.5

Total of 562 individuals observed for at least 15 adjoining years.

Many studies of income/earnings dynamics based on the PSID.

E.g. McCurdy (1982) and Abowd & Card (1989) where an AR-parameter

of unity is assumed as a starting point.



yit = log (annual incomeit)

xit =
³
constant, ageit, age

2
it, education-dummies

´0
The mixing weights do not depend on education level or year of birth,

therefore they are the same for all individuals, i.e. pi = p for i = 1, ..., N .

Some estimates from the mixture model:

Parameter Group 1 Group 2
ρ 0.5043 (0.0145) 0.7060 (0.0150)
α 0.1853 (0.0240) 0.2016 (0.0174)
Constant 2.3185 (0.9674) 0.5709 (0.2582)
σ2ε 0.1074 (0.0025) 0.0170 (0.0005)
σ2α/σ

2
ε 0.1885 (0.0263) 0.2593 (0.0406)

Weight 0.4885 (0.0230) 0.5115 (0.0230)
Log-like: 684.69

Standard errors are in brackets



Mixture model under unit root hypothesis:

Parameter Group 1 Group 2
ρ 0.6616 (0.0169) 1
α 0.2075 (0.0166) 0
Constant 0.6189 (0.2671) -0.9122 (0.4306)
σ2ε 0.0212 (0.0011) 0.1608 (0.0060)
σ2α/σ

2
ε 0.3035 (0.0430) 0

Weight 0.5795 (0.0292) 0.4205 (0.0292)
Log-like: 198.16

Conclusion:

• The processes describing the two groups of individuals are very differ-
ent, (high levels are associated with low variation and vice versa)

• There is no evidence of unit roots



Figure 2: Log earnings for group 1 (solid line) and group 2 (dashed line)



8 Summary

• The paper suggests a method which can be used to model cross-
section heterogeneity in micro-panels. The method is very flexible

since the mixture model easily can be extended to contain more than

two components. (This raises the issue of how to determine the

number of components).

• The model makes it possible to distinguish between unit root hy-
potheses which can not be distinguished by any of the existing test

procedures. More specifically, it is possible to test the hypothesis that

a group of units have unit root processes.


