Forecast combination and model averaging using predictive measures

Jana Eklund and Sune Karlsson Stockholm School of Economics

1 Introduction

- Combining forecasts robustifies and improves on individual forecasts (Bates & Granger (1969))
- Bayesian model averaging provides a theoretical motivation and performs well in practice (Min & Zellner (1993), Madigan & Raftery (1994), Jacobson & Karlsson (2004))
- BMA based on an in-sample measure of fit, the marginal likelihood
- We suggest the use of an out-of-sample, predictive measure of fit, the predictive likelihood

- 2 Forecast combination using Bayesian model averaging
 - $\mathfrak{M} = {\mathcal{M}_1, \ldots, \mathcal{M}_M}$ a set of possible models under consideration
 - Likelihood function $L(\mathbf{y}|\theta_i, \mathcal{M}_i)$
 - Prior probability for each model, $p(\mathcal{M}_i)$
 - Prior distribution of the parameters in each model, $p(\theta_i | \mathcal{M}_i)$
 - Posterior model probabilities

$$p\left(\mathcal{M}_{i} | \mathbf{y}\right) = \frac{m\left(\mathbf{y} | \mathcal{M}_{i}\right) p\left(\mathcal{M}_{i}\right)}{\sum_{j=1}^{M} m\left(\mathbf{y} | \mathcal{M}_{j}\right) p\left(\mathcal{M}_{j}\right)}$$
$$m\left(\mathbf{y} | \mathcal{M}_{i}\right) = \int L\left(\mathbf{y} | \theta_{i}, \mathcal{M}_{i}\right) p\left(\theta_{i} | \mathcal{M}_{i}\right) d\theta_{i}$$

with $m(\mathbf{y}|\mathcal{M}_i)$ the prior predictive density or marginal likelihood

• Model averaged posterior

$$p(\phi|\mathbf{y}) = \sum_{j=1}^{M} p(\phi|\mathbf{y}, \mathcal{M}_j) p(\mathcal{M}_j|\mathbf{y})$$

for ϕ some function of the parameters

- Accounts for model uncertainty
- In particular

$$\hat{y}_{T+h} = E\left(y_{T+h} | \mathbf{y}\right) = \sum_{j=1}^{M} E\left(y_{T+h} | \mathbf{y}, \mathcal{M}_j\right) p\left(\mathcal{M}_j | \mathbf{y}\right)$$

- Choice of models
 - Posterior model probabilities, $p(\mathcal{M}_i | \mathbf{y})$
 - Bayes factor

$$BF_{ij} = \frac{P(\mathcal{M}_i|\mathbf{y})}{P(\mathcal{M}_j|\mathbf{y})} \middle/ \frac{P(\mathcal{M}_i)}{P(\mathcal{M}_j)} = \frac{m(\mathbf{y}|\mathcal{M}_i)}{m(\mathbf{y}|\mathcal{M}_j)}$$

3 The predictive likelihood

• Split the sample $\mathbf{y} = (y_1, y_2, \dots, y_T)'$ into two parts with m and l observations, with T = m + l.

$$\mathbf{y}_{T\times 1} = \begin{bmatrix} \mathbf{y}_{m\times 1}^* \\ \widetilde{\mathbf{y}}_{l\times 1} \end{bmatrix} \text{ traning sample hold-out sample}$$

- The training sample \mathbf{y}^* is used to convert the prior into a posterior

 $p\left(\theta_{i}|\mathbf{y}^{*},\mathcal{M}_{i}\right)$

• Leads to posterior predictive density or predictive likelihood for the holdout sample $\widetilde{\mathbf{y}}$

$$p\left(\tilde{\mathbf{y}} | \mathbf{y}^{*}, \mathcal{M}_{i}\right) = \int_{\theta_{i}} L\left(\tilde{\mathbf{y}} | \theta_{i}, \mathbf{y}^{*}, \mathcal{M}_{i}\right) p\left(\theta_{i} | \mathbf{y}^{*}, \mathcal{M}_{i}\right) d\theta_{i}$$

• Partial Bayes factors

$$PBF_{ij} = \frac{p\left(\tilde{\mathbf{y}} \mid \mathbf{y}^{*}, \mathcal{M}_{i}\right)}{p\left(\tilde{\mathbf{y}} \mid \mathbf{y}^{*}, \mathcal{M}_{j}\right)} = \frac{m\left(\mathbf{y} \mid \mathcal{M}_{i}\right)}{m\left(\mathbf{y} \mid \mathcal{M}_{j}\right)} / \frac{m\left(\mathbf{y}^{*} \mid \mathcal{M}_{i}\right)}{m\left(\mathbf{y}^{*} \mid \mathcal{M}_{j}\right)}$$

- Asymptotically consistent model choice requires $T/m \to \infty$
- *Predictive* weights for forecast combinations

$$p\left(\mathcal{M}_{i} | \, \tilde{\mathbf{y}}, \mathbf{y}^{*}\right) = \frac{p\left(\tilde{\mathbf{y}} | \, \mathbf{y}^{*}, \mathcal{M}_{i}\right) p\left(\mathcal{M}_{i}\right)}{\sum_{j=1}^{M} p\left(\tilde{\mathbf{y}} | \, \mathbf{y}^{*}, \mathcal{M}_{j}\right) p\left(\mathcal{M}_{j}\right)}$$

- Can use improper priors on parameters of the models
- Forecast combination is based on weights from predictive likelihood
- Model specific posteriors based on the full sample
- Additional complication: How to choose the size of the training sample, *m*, and the hold-out sample, *l*?

- 3.1 Small sample results
 - Linear model

$$\mathbf{y} = \mathbf{Z}\gamma + \varepsilon$$
$$\mathbf{Z} = (\iota, \mathbf{X})$$

• Prior

$$\gamma \sim N\left(\mathbf{0}, c\sigma^2 \left(\mathbf{Z}'\mathbf{Z}\right)^{-1}\right)$$

 $p\left(\sigma^2\right) \propto 1/\sigma^2$

• The predictive likelihood is given by

$$p\left(\mathbf{\tilde{y}}\right) \propto \left(\frac{S^{*}}{m}\right)^{-l/2} \frac{|\mathbf{M}^{*}|^{\frac{1}{2}}}{\left|\mathbf{M}^{*} + \mathbf{\widetilde{Z}}'\mathbf{\widetilde{Z}}\right|^{\frac{1}{2}}} \times \left[m + \frac{1}{(S^{*}/m)} \left(\mathbf{\widetilde{y}} - \mathbf{\widetilde{Z}}\gamma_{1}\right)' \left(\mathbf{I} + \mathbf{\widetilde{Z}} \left(\mathbf{M}^{*}\right)^{-1} \mathbf{\widetilde{Z}}'\right)^{-1} \left(\mathbf{\widetilde{y}} - \mathbf{\widetilde{Z}}\gamma_{1}\right)\right]^{-T/2}$$

$$S^* = \frac{c}{c+1} \left(\mathbf{y}^* - \mathbf{Z}^* \hat{\gamma}^* \right)' \left(\mathbf{y}^* - \mathbf{Z}^* \hat{\gamma}^* \right) + \frac{1}{c+1} \mathbf{y}^{*\prime} \mathbf{y}^*$$
$$\gamma_1 = \frac{c}{c+1} \hat{\gamma}^*,$$
$$\mathbf{M}^* = \frac{c+1}{c} \mathbf{Z}^{*\prime} \mathbf{Z}^*$$

- Three components
 - In sample fit, $(S^*/m)^{-l/2}$
 - $\text{ Dimension of the model, } |\mathbf{M}^*|^{\frac{1}{2}} \left/ \left| \mathbf{M}^* + \widetilde{\mathbf{Z}}' \widetilde{\mathbf{Z}} \right|^{\frac{1}{2}} \right.$
 - Out of sample prediction,

$$\left[m + \frac{1}{(S^*/m)} \left(\widetilde{\mathbf{y}} - \widetilde{\mathbf{Z}}\gamma^*\right)' \left(\mathbf{I} + \widetilde{\mathbf{Z}} \left(\mathbf{M}^*\right)^{-1} \widetilde{\mathbf{Z}}'\right)^{-1} \left(\widetilde{\mathbf{y}} - \widetilde{\mathbf{Z}}\gamma^*\right)\right]^{-T/2}$$

Figure 1 Predictive likelihood for models with small and large prediction error variance.

4 MCMC

- Impossible to include all models in the calculations
 - Reduce the number of models by restricting the maximum number of variables to k^\prime
 - Only consider "good" models
- Use reversible jump MCMC to identify good models
- Exact posterior probabilities calculated conditional on the set of visited models

Algorithm 1 Reversible jump Markov chain Monte Carlo

Suppose that the Markov chains is at model \mathcal{M} , having parameters $\theta_{\mathcal{M}}$.

- 1. Propose a jump from model \mathcal{M} to a new model \mathcal{M}' with probability $j(\mathcal{M}'|\mathcal{M})$.
- 2. Accept the proposed model with probability

$$\alpha = \min\left\{1, \frac{p\left(\widetilde{\mathbf{y}}|\mathbf{y}, \mathcal{M}'\right) p\left(\mathcal{M}'\right) j\left(\mathcal{M}|\mathcal{M}'\right)}{p\left(\widetilde{\mathbf{y}}|\mathbf{y}, \mathcal{M}\right) p\left(\mathcal{M}\right) j\left(\mathcal{M}'|\mathcal{M}\right)}\right\}$$

3. Set $\mathcal{M} = \mathcal{M}'$ if the move is accepted otherwise remain at the current model.

- Two types of moves
 - 1. Draw a variable at random and drop it if it is in the model or add it to the model (if $k_{\mathcal{M}} < k'$). This step is attempted with probability p_A .
 - 2. Swap a randomly selected variable in the model for a randomly selected variable outside the model (if $k_{\mathcal{M}} > 0$). This step is attempted with probability $1 p_A$.

5 Simulation results

- Investigate the effect of the size of the hold-out sample
- Same design as Fernández, Ley & Steel (2001).
 - -15 possible predictors, $\mathbf{x}_1, \ldots, \mathbf{x}_{10}$ generated as NID(0, 1) and

 $(\mathbf{x}_{11},\ldots,\mathbf{x}_{15}) = (\mathbf{x}_1,\ldots,\mathbf{x}_5) (0.3,0.5,0.7,0.9,1.1)' (1,\ldots,1) + \mathbf{e},$

where \mathbf{e} are NID(0,1) errors.

- Dependent variable

 $y_t = 4 + 2x_{1,t} - x_{5,t} + 1.5x_{7,t} + x_{11,t} + 0.5x_{13,t} + \varepsilon_t,$

with $\varepsilon_t \sim N(0, 6.25)$

- $\mathfrak{M}\mathrm{-closed}$ view, true model assumed to be part of the model set
- \mathfrak{M} -open view, variables x_1 and x_7 excluded from set of possible predictors
- Three data sets, with last 20 observations set aside for forecast evaluation

$$-\ T=120$$
 (30 years of quarterly data),

- T = 250
- T = 400
- 100 samples of each sample size
- Prior on models

$$p(M_j) \propto \delta^{k_j} (1-\delta)^{k'-k_j},$$

where k_j is the number of variables included in model j, k' = 15 and $\delta = 0.2$.

• g-prior with $c = k'^3 = 3375$

- The Markov chain is run for 70 000 replicates, with the first 20 000 draws as burn-in
- Suggests that 70-80% of the data should be kept for the hold-out sample

Table 1 RMSFE for simulated data sets

	min for l	$_{\rm PL}$	ML
small data set, \mathfrak{M} -closed	83	2.6333	2.6406
medium data set, \mathfrak{M} -closed	177	2.5064	2.5268
medium data set, \mathfrak{M} -open	182	3.5919	3.6499
large data set, \mathfrak{M} -closed	322	2.5308	2.5310
large data set, \mathfrak{M} -open	302	3.3956	3.4605

 $\mathfrak{M}\text{-}\mathrm{closed}$ model :

$$y_t = 4 + 2x_{1,t} - x_{5,t} + 1.5x_{7,t} + x_{11,t} + 0.5x_{13,t} + \sigma\varepsilon_t, \tag{1}$$

with standard deviation 2.5 \mathfrak{M} -open model:

$$y_t | x_{-1,-7} = -1.034x_{2,t} - 1.448x_{3,t} - 1.862x_{4,t} - 3.276x_{5,t} + 1.414x_{11,t} \quad (2) + 0.414x_{12,t} + 0.914x_{13,t} + 0.414x_{14,t} + 0.414x_{15,t}$$

with standard deviation 3.355.

Figure 2 Ratio of RMSFE for predictive likelihood and marginal likelihood as a function of l for the simulated medium data set.

Figure 3 Ratio of RMSFE for predictive likelihood and marginal likelihood as a function of l for the simulated large data set.

Figure 4 Variable inclusion probabilities (average) for large data set, $\mathfrak{M}\mathrm{-closed}$ view

Figure 5 Variable inclusion probabilities (average) for large data set, $\mathfrak{M}-\mathrm{open}$ view

6 Swedish inflation

• Simple regression model of the form

$$y_{t+h} = \alpha + \omega d_{t+h} + \mathbf{x}_t \beta + \varepsilon_t,$$

- Constant term and a dummy variable, d_t , for the low inflation regime starting in 1992Q1 always included
- Quarterly data for the period 1983Q1 to 2003Q4 on 77 predictor variables
- Dynamics
 - A preliminary run is used to select, $\mathbf{x}_t^*,$ the 20 most promising predictors
 - The final run is based on these with one additional lag

$$y_{t+h} = \alpha + \omega d_{t+h} + \mathbf{x}_t^* \beta_1 + \mathbf{x}_{t-1}^* \beta_2 + \varepsilon_t,$$

• 4 quarter ahead forecasts for the period 1999Q1 to 2003Q4

- Maximum of 15 predictors, (k' = 15), $\delta = 0.1$
- T = 64, l = 44 for the hold-out sample
- $\bullet~5~000~000$ replicates

ble 2 RMSFE of th	ne Swedisn in	nation 4 quar	ters anead fore	ecast, for $l = 44$.
		Predictive likelihood	Marginal likelihood	
For	recast nbination	0.9429	1.5177	
Toj	р 1	1.0323	1.5376	
Toj	p 2	0.9036	1.7574	
Toj	р 3	0.9523	1.6438	
Toj	р4	1.0336	1.4828	
Toj	р 5	0.9870	2.0382	
Toj	р б	0.9661	1.6441	
Toj	р 7	1.0534	1.5755	
Toj	р 8	1.1758	1.2905	
Toj	р9	1.0983	1.8356	
Toj	р 10	1.0999	1.7202	
Ra wa	ndom lk	1.0251	1.0251	

Table 2 RMSFE of the Swedish inflation 4 quarters ahead forecast, for l = 44.

Figure 6 Swedish data, 4 quarters ahead inflation forecast, l = 44.

	0	1	1	(
	Predictiv	e likelihood	Margina	ıl likelihood	
	Variable	Post. prob.	Variable	Post. prob.	
1.	Infla	0.5528	Pp1664	0.9994	
2.	InfRel	0.4493	Pp1529	0.9896	
3.	U314W	0.3271	InfHWg	0.9456	
4.	REPO	0.2871	AFGX	0.8104	
5.	IndProd	0.2459	PpTot	0.4996	
6.	ExpInf	0.2392	PrvEmp	0.4804	
7.	R5Y	0.1947	InfCns	0.4513	
8.	InfFl	0.1749	InfPrd	0.4105	
9.	MO	0.1533	R3M	0.4048	
10.	InfUnd	0.1473	Pp75+	0.3927	
11.	LabFrc	0.1409	ExpInf	0.3829	
12.	NewHouse	0.1245	InfFor	0.3786	
13.	InfImpP	0.1225	MO	0.1793	
14.	${\tt PrvEmp}$	0.1219	POilSEK	0.1702	
15.	PPP	0.1134	USD	0.1170	

Table 3 Variables with highest posterior inclusion probabilities (average).

Table 4 Posterior model probabilities, 4 quarters ahead forecast for 1999Q1 using predictive likelihood with l = 44.

			Model		
Variable	1	2	3	4	5
InfRel	×	×	×		×
\texttt{InfRel}_{-1}				×	×
ExpInf	×	×	×	×	×
R5Y	×	×	×		×
InfFl	×	×		×	×
\texttt{InfFl}_{-1}			×		
InfUnd	×	×	×	×	×
USD	×	×	×		×
GDPTCW		×			×
\texttt{GDPTCW}_{-1}				×	
Post. Prob	0.0538	0.0301	0.0218	0.0187	0.0184

Table 5 Posterior model probabilities, 4 quarters ahead forecast for 1999Q1using marginal likelihood.

	Model					
Variable	1	2	3	4	5	
Pp1664	×	×	×	×	×	
Pp1529	×	×	×	×	×	
InfHWg	×	×	×	×	×	
\texttt{AFGX}_{-1}	×	×	×			
PpTot	×	×	×		×	
${\tt PpTot}_{-1}$				×		
$\mathtt{R3M}_{-1}$	×	×	×	×	×	
InfFor	×					
${\tt InfFor}_{-1}$		×				
POilSEK			×			
${\tt NewJob}_{-1}$	×	×				
PP2534	×	×				
Post. Prob	0.1316	0.0405	0.0347	0.0264	0.0259	

7 Conclusions

- The Bayesian approach to forecast combination works well
- The predictive likelihood improves on standard Bayesian model averaging based on the marginal likelihood
- The forecast weights based on predictive likelihood have good large and small sample properties
- Significant improvement when the true model or DGP not included in the set of considered models

References

- Bates, J. & Granger, C. (1969), 'The combination of forecasts', Operational Research Quarterly 20, 451–468.
- Fernández, C., Ley, E. & Steel, M. F. (2001), 'Benchmark priors for Bayesian model averaging', *Journal of Econometrics* 100(2), 381–427.
- Jacobson, T. & Karlsson, S. (2004), 'Finding good predictors for inflation: A Bayesian model averaging approach', Journal of Forecasting 23(7), 479– 496.
- Madigan, D. & Raftery, A. E. (1994), 'Model selection and accounting for model uncertainty in graphical models using Occam's window', *Journal* of the American Statistical Association 89(428), 1535–1546.
- Min, C.-K. & Zellner, A. (1993), 'Bayesian and non-bayesian methods for combining models and forecasts with applications to forecasting international growth rates', *Journal of Econometrics* 56(1-2), 89–118.