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1 Introduction

• Combining forecasts robustifies and improves on individual forecasts (Bates
& Granger (1969))

• Bayesian model averaging provides a theoretical motivation and performs
well in practice (Min & Zellner (1993), Madigan & Raftery (1994), Ja-
cobson & Karlsson (2004))

• BMA based on an in-sample measure of fit, the marginal likelihood

• We suggest the use of an out-of-sample, predictive measure of fit, the
predictive likelihood
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2 Forecast combination using Bayesian model aver-
aging

• M = {M1, . . . ,MM} a set of possible models under consideration

– Likelihood function L (y| θi,Mi)

– Prior probability for each model, p (Mi)

– Prior distribution of the parameters in each model, p (θi|Mi)

• Posterior model probabilities

p (Mi|y) =
m (y|Mi) p (Mi)∑M

j=1 m (y|Mj) p (Mj)

m (y|Mi) =
∫

L (y| θi,Mi) p (θi|Mi) dθi

with m (y|Mi) the prior predictive density or marginal likelihood
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• Model averaged posterior

p (φ|y) =
M∑

j=1

p (φ|y,Mj) p (Mj |y)

for φ some function of the parameters

– Accounts for model uncertainty
– In particular

ŷT+h = E (yT+h|y) =
M∑

j=1

E (yT+h|y,Mj) p (Mj |y)

• Choice of models

– Posterior model probabilities, p (Mi|y)
– Bayes factor

BFij =
P (Mi|y)
P (Mj |y)

/
P (Mi)
P (Mj)

=
m (y|Mi)
m (y|Mj)
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3 The predictive likelihood

• Split the sample y = (y1, y2, . . . , yT )′ into two parts with m and l obser-
vations, with T = m + l.

yT×1 =
[

y∗m×1

ỹl×1

]
traning sample
hold-out sample

• The training sample y∗ is used to convert the prior into a posterior

p (θi|y∗,Mi)

• Leads to posterior predictive density or predictive likelihood for the hold-
out sample ỹ

p ( ỹ|y∗,Mi) =
∫

θi

L ( ỹ| θi,y∗,Mi) p (θi|y∗,Mi) dθi

• Partial Bayes factors

PBFij =
p ( ỹ|y∗,Mi)
p ( ỹ|y∗,Mj)

=
m (y|Mi)
m (y|Mj)

/
m (y∗|Mi)
m (y∗|Mj)
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• Asymptotically consistent model choice requires T/m →∞

• Predictive weights for forecast combinations

p (Mi| ỹ,y∗) =
p ( ỹ|y∗,Mi) p (Mi)∑M

j=1 p ( ỹ|y∗,Mj) p (Mj)

• Can use improper priors on parameters of the models

• Forecast combination is based on weights from predictive likelihood

• Model specific posteriors based on the full sample

• Additional complication: How to choose the size of the training sample,
m, and the hold-out sample, l?
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3.1 Small sample results

• Linear model

y = Zγ + ε

Z = (ι,X)

• Prior

γ ∼ N
(
0, cσ2

(
Z′Z

)−1
)

p
(
σ2

)
∝ 1/σ2

• The predictive likelihood is given by

p (ỹ) ∝
(

S∗

m

)−l/2 |M∗|
1
2∣∣∣M∗ + Z̃′Z̃

∣∣∣ 1
2

×
[
m +

1
(S∗/m)

(
ỹ − Z̃γ1

)′ (
I + Z̃ (M∗)−1 Z̃′

)−1 (
ỹ − Z̃γ1

)]−T/2
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S∗ =
c

c + 1
(y∗ − Z∗γ̂∗)′ (y∗ − Z∗γ̂∗) +

1
c + 1

y∗′y∗

γ1 =
c

c + 1
γ̂∗,

M∗ =
c + 1

c
Z∗′Z∗

• Three components

– In sample fit, (S∗/m)−l/2

– Dimension of the model, |M∗|
1
2

/∣∣∣M∗ + Z̃′Z̃
∣∣∣ 1
2

– Out of sample prediction,[
m +

1
(S∗/m)

(
ỹ − Z̃γ∗

)′ (
I + Z̃ (M∗)−1 Z̃′

)−1 (
ỹ − Z̃γ∗

)]−T/2
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Figure 1 Predictive likelihood for models with small and large prediction error
variance.
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4 MCMC

• Impossible to include all models in the calculations

– Reduce the number of models by restricting the maximum number
of variables to k′

– Only consider ”good” models

• Use reversible jump MCMC to identify good models

• Exact posterior probabilities calculated conditional on the set of visited
models
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Algorithm 1 Reversible jump Markov chain Monte Carlo
Suppose that the Markov chains is at model M, having parameters θM.

1. Propose a jump from model M to a new model M′ with probability
j(M′|M).

2. Accept the proposed model with probability

α = min
{

1,
p (ỹ|y,M′) p (M′) j (M|M′)
p (ỹ|y,M) p (M) j (M′|M)

}

3. Set M = M′ if the move is accepted otherwise remain at the current
model.
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• Two types of moves

1. Draw a variable at random and drop it if it is in the model or add it
to the model (if kM < k′). This step is attempted with probability
pA.

2. Swap a randomly selected variable in the model for a randomly
selected variable outside the model (if kM > 0). This step is at-
tempted with probability 1− pA.
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5 Simulation results

• Investigate the effect of the size of the hold-out sample

• Same design as Fernández, Ley & Steel (2001).

– 15 possible predictors, x1, . . . ,x10 generated as NID (0, 1) and

(x11, . . . ,x15) = (x1, . . . ,x5) (0.3, 0.5, 0.7, 0.9, 1.1)
′
(1, . . . , 1) + e,

where e are NID (0, 1) errors.

– Dependent variable

yt = 4 + 2x1,t − x5,t + 1.5x7,t + x11,t + 0.5x13,t + εt,

with εt ∼ N (0, 6.25)
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• M−closed view, true model assumed to be part of the model set

• M−open view, variables x1 and x7 excluded from set of possible predic-
tors

• Three data sets, with last 20 observations set aside for forecast evaluation

– T = 120 (30 years of quarterly data),

– T = 250

– T = 400

– 100 samples of each sample size

• Prior on models
p (Mj) ∝ δkj (1− δ)k′−kj ,

where kj is the number of variables included in model j, k′ = 15 and
δ = 0.2.

• g-prior with c = k′3 = 3375
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• The Markov chain is run for 70 000 replicates, with the first 20 000 draws
as burn-in

• Suggests that 70-80% of the data should be kept for the hold-out sample
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Table 1 RMSFE for simulated data sets
min for l PL ML

small data set,M-closed 83 2.6333 2.6406
medium data set,M-closed 177 2.5064 2.5268
medium data set,M-open 182 3.5919 3.6499
large data set,M-closed 322 2.5308 2.5310
large data set,M-open 302 3.3956 3.4605

M-closed model :

yt = 4 + 2x1,t − x5,t + 1.5x7,t + x11,t + 0.5x13,t + σεt, (1)

with standard deviation 2.5
M-open model:

yt|x−1,−7 = −1.034x2,t − 1.448x3,t − 1.862x4,t − 3.276x5,t + 1.414x11,t (2)
+ 0.414x12,t + 0.914x13,t + 0.414x14,t + 0.414x15,t

with standard deviation 3.355.
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Figure 2 Ratio of RMSFE for predictive likelihood and marginal likelihood as
a function of l for the simulated medium data set.
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Figure 3 Ratio of RMSFE for predictive likelihood and marginal likelihood as
a function of l for the simulated large data set.
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Figure 4 Variable inclusion probabilities (average) for large data set,
M−closed view
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Figure 5 Variable inclusion probabilities (average) for large data set, M−open
view
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6 Swedish inflation

• Simple regression model of the form

yt+h = α + ωdt+h + xtβ + εt,

• Constant term and a dummy variable, dt, for the low inflation regime
starting in 1992Q1 always included

• Quarterly data for the period 1983Q1 to 2003Q4 on 77 predictor variables

• Dynamics

– A preliminary run is used to select, x∗t , the 20 most promising pre-
dictors

– The final run is based on these with one additional lag

yt+h = α + ωdt+h + x∗t β1 + x∗t−1β2 + εt,

• 4 quarter ahead forecasts for the period 1999Q1 to 2003Q4
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• Maximum of 15 predictors, (k′ = 15) , δ = 0.1

• T = 64, l = 44 for the hold-out sample

• 5 000 000 replicates
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Table 2 RMSFE of the Swedish inflation 4 quarters ahead forecast, for l = 44.

Predictive
likelihood

Marginal
likelihood

Forecast
combination

0.9429 1.5177

Top 1 1.0323 1.5376
Top 2 0.9036 1.7574
Top 3 0.9523 1.6438
Top 4 1.0336 1.4828
Top 5 0.9870 2.0382
Top 6 0.9661 1.6441
Top 7 1.0534 1.5755
Top 8 1.1758 1.2905
Top 9 1.0983 1.8356
Top 10 1.0999 1.7202
Random
walk

1.0251 1.0251
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Figure 6 Swedish data, 4 quarters ahead inflation forecast, l = 44.
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Table 3 Variables with highest posterior inclusion probabilities (average).
Predictive likelihood Marginal likelihood

Variable Post. prob. Variable Post. prob.
1. Infla 0.5528 Pp1664 0.9994
2. InfRel 0.4493 Pp1529 0.9896
3. U314W 0.3271 InfHWg 0.9456
4. REPO 0.2871 AFGX 0.8104
5. IndProd 0.2459 PpTot 0.4996
6. ExpInf 0.2392 PrvEmp 0.4804
7. R5Y 0.1947 InfCns 0.4513
8. InfFl 0.1749 InfPrd 0.4105
9. M0 0.1533 R3M 0.4048

10. InfUnd 0.1473 Pp75+ 0.3927
11. LabFrc 0.1409 ExpInf 0.3829
12. NewHouse 0.1245 InfFor 0.3786
13. InfImpP 0.1225 M0 0.1793
14. PrvEmp 0.1219 POilSEK 0.1702
15. PPP 0.1134 USD 0.1170
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Table 4 Posterior model probabilities, 4 quarters ahead forecast for 1999Q1
using predictive likelihood with l = 44.

Model
Variable 1 2 3 4 5
InfRel × × × ×
InfRel−1 × ×
ExpInf × × × × ×
R5Y × × × ×
InfFl × × × ×
InfFl−1 ×
InfUnd × × × × ×
USD × × × ×
GDPTCW × ×
GDPTCW−1 ×
Post. Prob 0.0538 0.0301 0.0218 0.0187 0.0184
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Table 5 Posterior model probabilities, 4 quarters ahead forecast for 1999Q1
using marginal likelihood.

Model
Variable 1 2 3 4 5
Pp1664 × × × × ×
Pp1529 × × × × ×
InfHWg × × × × ×
AFGX−1 × × ×
PpTot × × × ×
PpTot−1 ×
R3M−1 × × × × ×
InfFor ×
InfFor−1 ×
POilSEK ×
NewJob−1 × ×
PP2534 × ×
Post. Prob 0.1316 0.0405 0.0347 0.0264 0.0259
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7 Conclusions

• The Bayesian approach to forecast combination works well

• The predictive likelihood improves on standard Bayesian model averaging
based on the marginal likelihood

• The forecast weights based on predictive likelihood have good large and
small sample properties

• Significant improvement when the true model or DGP not included in
the set of considered models
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