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• Description of calculation of approximations

• Simulation of a univariate model

• Simulation of a multivariate model

• A simple application to Icelandic bond data

• Discussion
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• What is a diffusion model?

• Answer: A stochastic model describing continuous

time dynamics. Such models have been made

popular in mathematical fincance, e.g., by

Nobel-prize winners Merton and Scholes.

• A typical way of representing such models, i.e.

desribing the nature of a dynamic process X(t), is

by means of stochastic differential equations:

dX(t) = µ(X(t), θ)dt
︸ ︷︷ ︸

drift

+ σ(X(t), θ)dW (t)
︸ ︷︷ ︸

diffusion term

θ is að vector of parameters that define the

behaviour of the process.
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• W (t) is a standard Wiener process. For t > s,

E(W (t)|W (s)) = W (s), W continuous independent

increment process. dW (t) is continuous time white

noise.

• The µ(X(t), θ)dt part represents the predictable

part of the process.

• The σ(X(t), θ)dW part represents the stochastic

part.
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Data and model

• The mathematical idealization

• A given diffusion:

dX(t) = µ(X(t), θ)dt + σ(X(t), θ)dW (t)

is observed at times t1, . . . , tn. The parameter, θ is

to be estimated from X(t1), . . . , X(tn).

• A few approaches, simulation methods, method of

moments, estimating functions,

maximum-likelihood approximation.
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• The transition density:

f(x|x0, ∆) = density for X(t + ∆) given X(t) = x0

is only known for for some specific µ(X(t), θ) and

σ(X(t), θ)

• Therefore maximizing the log-likelihood, i.e.,

solving:

max
θ

l(θ|X(t1), . . . , X(tn))

is only possible in some special cases.



Some populuar diffusion models

OU dX(t) = κ(α − X(t))dt + σdW (t) (1)

Ornstein-Uhlenbeck/Vasicek

CIR dX(t) = κ(α − X(t))dt + σ
√

X(t)dW (t) (2)

Cox-Ingersoll-Ross/square-root process

CKLS dX(t) = κ(α − X(t))dt + σX(t)ρdW (t) (3)

Chan, Karolyi, Longstaff & Sanders (1992),

Cases of special interest ρ = 1/2 and ρ = 1
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These are all stochastic versions of a very simple

differential equation:

dX(t) = κ(α − X(t))dt

Given X(0), the solution is of the form:

X(t) = α + exp(−κt)(X(0) − α)
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The α parameter is the longtime equilibrium, κ

controls the speed of convergence to equilibrium.

If at time 0, the system is at (X(0) − α) distance from

equilibrium, then it will take the system log(2)/κ time

units to decrease that distance by 50%.

In the stochastic case σ and ρ control the volality of

the process.
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Kolmogorov forward equation

• What is known about f(x|x0, ∆)?,

x = x(t + ∆), x0 = x(t)

• Since X(t) is a diffusion process the density

function f(x|x0, ∆) solves:

∂f(x|x0, ∆)

∂∆
+

∂
(
µ(x, θ)f(x|x0, ∆)

)

∂x

−
1

2

∂2
(
σ2(x, θ)f(x|x0, ∆)

)

∂x2
= 0

What can be said about it?
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Assuming σ(x) = 1,

writing p(x|x0, ∆) = log(f(x|x0, ∆)

and substituting ep(x|x0,∆) for f(x|x0, ∆) in Kolmogorov’s

equations gives:

∂p(x|x0, ∆)

∂∆
+ µ′(x) + µ(x)

∂p(x|x0, ∆)

∂x
(4)

−
1

2

[
∂p(x|x0, ∆)

∂x

]2

−
1

2

∂2p(x|x0, ∆)

∂x2
= 0



A Taylor expansion of p(x|x0, ∆) in ∆ is on the form:



A Taylor expansion of p(x|x0, ∆) in ∆ is on the form:

−
1

2
log(2π∆) −

(x − x0)2

2∆
+ c0(x|x0) + c1(x|x0)∆

+c2(x|x0)
∆2

2
+ c3(x|x0)

∆3

3!
+ · · ·



Substituting the Taylor expansion into equation (4)

gives the first two terms:



Substituting the Taylor expansion into equation (4)

gives the first two terms:

−
(x − x0)(µ(x) − c′0(x|x0))

∆
(5)

−
1

2
c0(x|x0)

′(x)2 + µ(x) + µ(x)c′0(x|x0) (6)

−
c′′0(x|x0)

2
+ c1(x|x0) + (x − x0)c

′
1(x|x0)



Next terms



Next terms

+
1

2
∆(2(µ(x) − c′0(x|x0))c

′
1(x|x0) − c′′1(x|x0)

+2c2(x|x0) + (x − x0)c
′
2(x|x0))

+
1

12
∆2(−6c′1(x|x0)

2 + 6
(
µ(x) − c′0(x|x0)

)
c′2(x|x0)

−3c′′2(x|x0) + 6c3(x|x0) + 2(x − x0)c
′
3(x|x0))

...



The Kolomogorov equations force the coefficients for

each power of ∆ to be zero.

Equation (5) gives

c0(x|x0) =

∫ x

x0

µ(u)du



• Substituting c0(x|x0) into reduces the system of

equations to

1

2
(µ(x)2 + µ′(x)2) + c1(x|x0) + (x − x0)c′1(x|x0) = 0

−c′′1(x|x0) + 2c2(x|x0) + (x − x0)c
′
2(x|x0) = 0

−
3

2
c′′2(x|x0) − 3c′1(x|x0)

2

+3c3(x|x0) + (x − x0)c
′
3(x|x0) = 0

...



And more



And more

−2c′′3(x|x0) − 12c′1(x)c′2(x) +

4c4(x|x0) + (x − x0)c
′
4(x|x0) = 0

−
5

2
c′′4(x|x0) − 20c′1(x|x0)c

′
3(x|x0)

−15c′2(x|x0)
2 + 5c5(x|x0) + (x − x0)c

′
5(x|x0) = 0

...
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• The cj functions are derived recursively by solving

the differential equations of the type:

jcj(x|x0) + (x − x0)c
′
j(x|x0) = qj(x) which gives

cj(x) =
1

(x − x0)j

∫ x

x0

(u − x0)
j−1qj(u)du

• The functions qj(x) are deciced by c0, . . . , cj−1
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Some comments

• What if the diffusion is not 1?

• Transform X(t) to Y (t) such that Y (t) has

diffusion 1. That is always possible if X(t) is

one-dimensional

Y (t) = γ(X(t)) = ±

∫ X(t) du

σ(u)
+ constant

• Ito’s lemma gives that Y (t) will have unit diffusion

and drift:

µY (y) = ±

(

µ(γ−1(y))

σ(γ−1(y))
−

1

2

∂σ

∂x
(γ−1(y))

)



• The densities fX and fY are related by:

fX(x|x0, ∆) = fY (y|y0, ∆)|Jacobian| = fY (y|y0, ∆)/σ(x)



• The densities fX and fY are related by:

fX(x|x0, ∆) = fY (y|y0, ∆)|Jacobian| = fY (y|y0, ∆)/σ(x)

• I.e. the connection between the log-densites for

X(t)|X(0) and Y (t)|Y (0) is:

pX(x|x0, ∆) = pY (y|y0, ∆) + log(1/σ(x))
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• Therefore the transformation is only a

technicality. I.e. the Taylor coefficints cj will be

messier functions of x and x0 than of y = γ(x) and

y0 = γ(x0).

• Numerically it might be better to work with Y (t)

than X(t).

• Solving recursively for the functions cj becomes

increasingly complicated. A Taylor expansion in x

around x0 (or y around y0) is therefore an option.
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• If no transformation took place, one still gets a

sequence of differential equations to solve, but

they will be more complicated.

2c−1(x) + σ(x)2(c′−1(x))2 = 0 c−1(x0) = 0

will be the first one
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Recursive system for untransformed variable:

Condition (1) v(x) = σ2(x)

v(x)c′−1(x)2 + 2c−1(x) = 0

c−1(x) = −
1

2

(
∫ x

x0

du
√

v(x)

)2

Condition(2)

−c′0(x)c′−1(x)v(x)2 −
1

2
c′′−1(x)v(x)2

−
3

2
c′−1(x)v′(x)v(x) + µ(x)c′−1(x) −

1

2
= 0



Condition (3) (Coefficient on t)

c1(x) − c′1(x)c′1(x)σ(x)2 + µ(x)c′0(x) + µ′(x) −

µ(x)σ′(x)

2σ(x)

−
1

2
c′0(x)2σ(x)2 −

1

2
c′′0(x)σ(x)2 −

3

2
c′0(x)σ′(x)σ(x) −

3

4
σ′′(x)σ(x) −

3

8
σ′(x)2 = 0
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Higher dimensions

• Same principles apply

• Think of a 2-dimensional case.

d




X1(t)

X2(t)



 =




µ1(X1(t), X2(t), θ)

µ2(X1(t), X2(t), θ)



 dt +




σ11(X1(t), X2(t), θ) σ12(X1(t), X2(t), θ)

σ21(X1(t), X2(t), θ) σ21(X1(t), X2(t), θ)








dW1(t)

dW2(t)







• The log-density is assumed to be of the form

−
m

2
log(2π∆) − D(x, θ) +

C(−1)(x, θ)

∆
+

C(0)(x, θ) + C(1)(x, θ)∆ + C(2)(x, θ)∆2/2 +

C(3)(x, θ)∆3/3! + · · ·

D(x, θ) =
1

2
log(det(σ(x, θ)σ(x, θ)T )
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• Some conditions on σij are needed in order to find

a neat transformation as in the univariate case.

• Ait-Sahalia calls that situation a „reducible” case,

and the case where such a transformation does

not exist.
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• Analytical solutions of the C(j) functions difficult,

so focus is on Taylor expansions (in x).

• The resulting functions will be C(j,l) where an l-th

order Taylor approximation of order l has been

taken in x. A trick that could also be useful in one

dimension.

• The C(j,l) functions can be derived analogously to

the univariate case in a messy but

straightforeward manner.
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Will it work?

A small simulation. The model

dX = κ(α − X)dt + σXρdW

is simulated using Milstein-scheme (strong Taylor of

order 1, 25 replications).

• The time spans used are T= 1, 10, 100

• ∆=1, 0.1 and 0.01 are used.

• 10 points of process per observation.

• κ = 0.24, α = 0.07, σ = 0.08838, ρ = 0.75.
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T=1 T=10 T=100

κ̂ 3.2742 0.5352 0.2709

α̂ 0.0793 0.0962 0.0695

σ̂ 0.1115 0.0979 0.0899

ρ̂ 0.7695 0.7732 0.7570

Table 1: Average estimates, for ∆=0.01



delta=1 delta=0.1

κ̂ 0.8232 0.2916

α̂ 0.0644 0.0744

σ̂ 0.0984 0.0864

ρ̂ 0.7342 0.7299

Table 2: Average estimates, for T=100



T=1 T=10 T=100

s.d. κ̂ 1.8703 0.3995 0.0693

s.d α̂ 0.0234 0.1269 0.0048

s.d. σ̂ 0.0542 0.0309 0.0042

s.d ρ̂ 0.2794 0.1084 0.0176

Table 3: Standard deviation of simulations, for

∆=0.01



delta=1 delta=0.1

s.d. κ̂ 0.4680 0.1807

s.d α̂ 0.0099 0.0248

s.d. σ̂ 0.0510 0.0196

s.d ρ̂ 0.2190 0.0851

Table 4: Standard deviation of simulations, for T=100



A two dimensional example:

dX = µdt + σ1e
Y dW1

dY = κ(α − Y )dt + σ2dW2



Results of 20 replications, µ = 0, σ1 = σ2 = 1, κ = 20,

α = 0.01. T=1, ∆ = 1/10000

κ̂ α̂ σ̂1 µ̂ σ̂2

m̄ 24.1 0.0053 1.004 −0.159 1.000

sd 5.61 0.0519 0.006 0.983 0.007

Table 5: Simulation of 2-dim. model



Icelandic interest rate data

• Each transaction in 2002-2004.

• Zero-coupon governmental bonds, annualized to

r(t).

• Form of data:

RIKV 02 06 05 96.165 03.01.2002 11:42:44

RIKV 02 08 06 94.915 04.01.2002 11:13:10
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Figure 1: 1000 days of Icelandic bond market
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• Timeperiod is 1050 days. Trading took place on

432 days.

• 1933 transactions took place 5 days a week.

1 2 3 4 5

383 410 351 452 337
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Histogram of trading frequency
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Figure 2: Trading frequency
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Figure 3: Daily standard deviations
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Figure 4: Daily observed range
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• Of the 1933 observations, 664 had ∆i = 0. Many

had very small ∆i = 0.

• The variance of the prices of the simultaneous

observations offers a possibility to estimate the

market microstructure noise. The standard

deviation of simultaneous transactions is 6.4

points. (1%=100 points).

• For the expansion framework to work, the ∆i’s

have to be small, but not to small, e.g., 10−8 is to

small. The diffusion models rule out large jumps

in small intervals.
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2 Result of CIR for Icelandic data

• t=1 month. Median r(t) of a day chosen.

κ̂ =15.090824 α̂ =0.046586 σ̂ =0.081569

s.e.=0.028743 s.e.=0.000007 s.e.=0.000237

Looks much more peaceful than the test example that

Chan, Karolyi, Longstaff & Sanders (1992) claim is a

natural result.
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Test example

T=1000, ∆ = 0.04, simulation result (1000

time-periods), one replication. Parameter values from

Chan, Karolyi, Longstaff & Sanders (1992).

κ =0.24 alpha =0.08 σ =0.08838

κ̂ =0.23908 α̂ =0.08353 σ̂ =0.08757

s.e.=0.02196 s.e.=0.00335 s.e.=0.00039

• x̄ = 0.08358, µ = α = 0.08

• s = 0.03556, max(x(t)) = 0.2801, min(x(t)) = 0.0089

• St.dev of stationary dist.=
√

α ∗ σ2/(2 ∗ κ) = 0.03608
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Figure 5: A simulated CIR for 1000 time-periods.
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• The use of diffusion process for statistical analysis

of dynamic processes is a feasible approach,

• In the authors mind more to bond data than very

high frequency stock data but also in

continuous-time macroeconometrics.
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