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Abstract

This paper seeks to determine what drives inflation variation in
Iceland and examine the extent to which local currency pricing is
present. To that end we define and estimate a Bayesian structural
vector autoregression model. For identification we employ the
method developed by Baumeister and Hamilton (2015), defining
priors on the impact matrix and on the long run behaviour of
the model. We find that supply shocks and exchange rate shocks
are the largest contributors in short run dynamics of inflation
while foreign shocks dominate the medium and long run horizons.
Our results strongly suggest that local currency pricing is largely
absent. A test of robustness suggests that our results w.r.t.
foreign influences on domestic inflation hold. Whether foreign
demand or foreign inflation plays a larger role in determining long
horizon variation in inflation seems to vary considerably over the
period considered.
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1 Introduction

Vector autoregression (VAR) models have become ubiquitous in macroeconomic
modelling, beginning with the seminal paper Macroeconomics and Reality (Sims,
1980). These atheoretical! models were a response to the then popular multivariate
simultaneous equations models with ad hoc exogeneities. However, there are two
common critiques levied at VAR models which we shall set about remedying.
Firstly, there is the issue of overfitting. Overfitting translates to poor forcasting
capabilities due to the estimation process assigning meaning to uninterpretable
movement of the variables, relative to the model structure. This phenomenon is a
result of the inherent rapid increase in parameters in a reduced VAR model as the
number of variables grows. The number of parameters necessary to describe an
arbitrary n-variable VAR model increases proportionally to n? and linearly with
respect to the number of lags, p. If the time series is not sufficiently long, overfitting
follows. The second problem of VAR models stems from their inherent atheoretical
structure. As such and without modification it is impossible to assign economic
meaning to the model’s residuals. To overcome the first of these issues we can use
Bayesian methods.? Designating appropriate priors on the parameters can reduce
the tendency to overfit, thus improving, in theory, forecasting performance. If one
considers forecasting performance a good metric of model quality, one expects that
good priors will lead measures such as impulse functions and innovation accounting
to follow suit and become a more accurate description of reality. We can attack the
second problem by allowing contemporaneous effects, transforming the VAR model
into a structural vector autoregression (SVAR) model. Naturally, Bayesian SVAR
(BSVAR) models are not faultless. The issue of identification in SVAR models is
well known and implies that the data is never informative enough on its own to
allow us to infer the true parametrization of an unrestricted SVAR model. Many
methods exist to mediate such concerns, all of which rest on using prior, or external,
information to restrict the contemporaneous effects.* Unfortunately, there is no
consensus on the choice of priors. Baumeister and Hamilton (2015) formalized
the use of prior information to identify BSVAR models. Namely, by constructing
priors directly on the impulse functions of the model in conjunction with Theil’s
mixed estimation (Theil, 1971) to take long run behaviour into account.

I'These models are atheoretical in the sense that there are no assumptions on the structure of
the equations themselves. However, one might consider the choice of variables, the choice of lag
length employed, and the assumptions on the statistical properties of the errors as theoretical
assumptions.

2More generally, specifying an appropriate loss function on the set parmeters reduces overfit-
ting.

3See Stock and Watson (2017) for a discussion on these methods.



We augment the aforementioned method of Baumeister and Hamilton to accom-
modate small open economy peculiarities and estimate a 9 variable BSVAR model
for Iceland. This allows us to analyse the determinants of inflation. Inflation in
Iceland has been tumultous, characterized by volatility and high levels in compar-
ison to Iceland’s main trading partners, from the 1950s to the early 2010s, albeit
intermittently low and stable. Furthermore, devaluation of the currency has been
relatively frequent over the period.* As a result, researchers have put much focus
on understanding inflation in Iceland. In particular, efforts have been directed
towards sheding light on the effects of exchange rate shocks and foreign shocks
on inflation.> Broadly, our aim is to elucidate which forces primarily influence
inflation dynamics in Iceland. More specifically, we want to examine to what ex-
tent these dynamics differ from the findings of Thorarinsson (2020) on inflation
dynamics. To that end we compare impulse responses of inflation as well as ex-
amining the forecast error variance decomposition of inflation and its historical
shock decomposition. Lastly, we estimate the contemporaneous cost-push effect
on import price, and examine how foreign price affects domestic inflation taking
into account import price inflation. This allows us to evaluate the extent to which
local currency pricing of foreign goods is present in Iceland.

The paper is structured as follows: Section 2 describes the model and data em-
ployed in the estimation. Section 3 delineates priors for all the model’s parameters
as well as priors on impulse response functions and restrictions the long run be-
haviour of the model. Section 4 details the estimation strategy and implementa-
tion. In section 5 we present our results. Finally, we briefly explore the robustness
of our results in section 6.

2 Model and data

Let z be a (n x 1) vector of observables of interest. We posit that these variables
evolve according to a dynamic structural model:

Az = Bxyq + 1wy (1)

where x;_; is a (k x 1) vector of observables and a constant, A is a (n x n)
matrix, B = [By,..., By, By| is a (n X k) matrix, and u; is a (n x 1) vector of

4See Pétursson (2018) for a brief history of inflation in Iceland; Gudmundsson et al. (2000)
for details on currency devaluation in Iceland; Andersen and Gudmundsson (1998) and Snaevarr
(1993) (in Icelandic) for a more detailed description.

°See e.g. Gudmundsson (1990) (in Icelandic), Gudmundsson (2002) (in Icelandic), Pétursson
(1998), Andersen and Gudmundsson (1998), and Edwards and Cabezas (2021).

6The constant possibly set to be identically zero.



identically and independently normally distributed stochastic elements with mean
zero and variance d;. We can collect the d;;’s into the diagonal of a matrix D and
write u; ~ N(0, D). If 2,1 consists of p lagged values of z; and a constant, i.e.
Ty = (24,2, 1], further implying that & = np + 1, then equation (1) is
referred to as a structural vector autoregression (SVAR). We can then write

A(L)z = wy (2)

or, if A is invertible:
AH(L>Zt = Hut

Where A(L) = A—-Y" B/L', Ay(L) =1, — > ;' HB;L', and H = A~'. Thus
in the case where the matrix A is invertible, we have the corresponding reduced
VAR of order p

2 =®x 1+ (3)

where ® = HB, ¢, = Huy, and E[gie})] = Q = HDH'. We can derive a structural
vector autoregressive moving average (SVMA) representation in the case where
the SVAR in equation (2) is stable:”

2 = O(L)uy (4)

where ©(L) = Y77, O, L". The matrix A contains contemporaneous relationships
between elements of z;, while B relays information intertemporally. Furthermore,
elements of u, are interpreted as structural shocks, the meaning of which depends
on the application.

To accommodate idiosyncrasies of the underlying data generating process in gen-
eral, we can impose linear constraints on the parameters of the form

8= Re (5)

where 8 = vec(B) or = vec(B’). In particular, for a small open economy, like
Iceland, we can demand that

where b; is the transpose of the i'th row of the matrix B. More specifically, we
insist that parameters relating effects of the domestic economy to the foreign one
are identically zero. We can define R = @ |R;, ¢ = (¢}, ..., d,)’, with § = vec(B’)

and recover the general form given in equation (5). Let us define Z, X and U to

A VAR(p) model is called stable if the eigenvalues of F in the equivalent VAR(1) model
zt = Fzy_1 + & all lie inside the unit circle. We call a SVAR(p) stable if there exists a stable
reduced VAR representation.



be matrices of stacked vectors of corresponding variables with dimensions (n x T'),
(k x T), and (n x T), respectively. We can rewrite the model given in equation
(1) as

(Ir@A)z=(X'"®1,) K,7f +u

where z = vec(Z), u = vec(U), K,r is the commutation matrix,® and ® is the
kronecker product.? Inserting the linear constraint we get

(Ir® A)z = (X' ® I,) Rce + u (7)

where R = K,,7R.*° In our application we specify a n = 9 variable SVAR of order
p = 2. The structural equations stem from the small open economy IS-curve, the
New Keynesian Phillips curve, the uncovered interest rate parity, a Taylor rule and
Gordon’s triangle model. With these specifications in mind we require measures
on domestic output gap (y), domestic inflation (7), domestic interest rates (r), the
real exchange rate (s), and import price inflation (m,,). The foreign economy is
described with trade weighted foreign output gap, inflation and interest rates (y*,
7, r*). Since our focus is on domestic inflation dynamics we augment the data
set with 5 year break-even inflation expectations (7g). A summary of our dataset
can be found in table 1. The data is collected from Statistics Iceland and is at
quarterly frequency. The output gap is calculated using the potential described in
Danielsson et al. (2019). Inflation is represented by per cent logarithmic difference
of consumer price index. Interest rates are given by the Central bank of Iceland’s
(CBI) monetary policy rate measured in annual yields. Import price inflation is the
per cent logarithmic difference of the import price deflator. The 5-year break even
inflation is calculated from the risk adjusted ratio of interest rates on 5-year bonds
and 5-year indexed bonds. Foreign variables are a trade weighted aggregation
of foreign output gap,'! inflation and interest rates. The real exchange rate, s,
is calculated from the CBI’s nominal exchange rate, the trade weighted foreign
price and the CPI index. The data are all at quarterly frequency over the period
1993:Q1 — 2019:Q4.

3 Priors

Let ¢ be the vector of parameters from A, B, and D, we want to estimate. We
assume that we can naturally decompose the prior density function (pdf) in the

8Defined such that for a nj x ng matrix A we have vec(A’) = K,,,,,vec(A). It has the property
that for every ny x ng matrix A and my xms matrix B, we have Ky, 1m, (A ® B) Kym, = (B ® A).
Moreover, commutation matrices are orthonormal.

9See Liitkepohl (2005) for details.

OFurther details can be found in the Mathematical appendix.

"The potential of foreign trade weighted output is found via the Hodrick-Prescott filter.



following way
p(¢) = p(A, ¢, D) = p(A)p(D]A)p(c|A, D)

where we have used the restriction vec(B’) = Rec. It follows that we want to first
specify the pdf for A, then D as a possible function of A and lastly we decide upon
the prior for ¢, which can be a function of the elements of A and D. Following
Baumeister and Hamilton (2015) we use the Student’s t-distribution as a default
prior distribution. The t-distribution has the attractive property of being symmet-
rical and having fatter tails than a comparable normal distribution. We denote
the Student’s t-distribution with mean u, f degrees of freedom and a scaling pa-
rameter § as tye(p). Furthermore, we denote a positively (negatively) truncated
t-distribution as 7 (u) (t7¢(p))."

3.1 Priors for contemporaneous effects

Since Iceland is a small open economy, the domestic economy does not affect
the foreign economy, while the foreign economy can have a sizeable impact on
the domestic economy. We achieve this by setting the relevant coefficients as
identically zero. We take inspiration from Baumeister and Hamilton (2018) in
using economic theory for each variable of interest to determine the priors for the
contemporaneous effects other variables have on it. In setting our priors, the main
references, in addition to Baumeister and Hamilton (2018), will be Thorarinsson
(2020), and Gali and Monacelli (2005). Omitted priors for elements of A are to be
assumed to have point mass at 0.

3.1.1 Output

Our specification of the contemporaneous dependence of output is intimetaly re-
lated to the dynamic New Keynesian IS-curve, and as such serves as aggregate
demand. Both Gali and Monacelli (2005), and Thorarinsson (2020) derive an
expression for the output gap, at time ¢, congruent to

Ye = Ypy1fe — Wylre — Tigpe) + 9;3/: + b;l’tq + Eyt (8)

where b’yxt,l is a linear combination of lagged terms and a constant. As in
Baumeister and Hamilton (2018), who note that their approach is more empir-
ical than theoretical in nature, and whose priors are aligned with that of Doan et
al. (1984) and Sims and Zha (1999), who, in turn, contend that the most recent

2For a given mean u and scale parmeter &, we have that tf¢(u) — N (p,£%) when f — +o0.



observation can be presupposed to forecast the subsequent value reasonably well,
we assume that

* *
Y+t = Cy T KylYt,  Tiq1)t = Cr + KaTy, Yepapp = Cy= + Ky Yy

where ¢; is any constant, for i € {y, w,y*}, and set k = K, = 0.75, for z € {y, 7, y*}.
Equation (8) becomes

Yo = Byme — Ve + Oy + by 1 + ey 9)
where 7, = 17“’#, By, = :’(‘;’ZH, and 0, = lii’yﬁ. Purely forward looking New

Keynesian models proclaim that o, = 1. Including habit persistence, we get a
more conservative estimate of o, = 0.6. The prior for an analogue of w, from Tho-
rarinsson (2020), implies a mode of roughly 0.05, which gives a mode of roughly
0.1 for 7, and 0.07 for 3,. Moreover, taking note of the different calibrations for
these coefficients in the literature, as noted by Baumeister and Hamilton (2018),
who calibrate their values significantly higher than Thorarinsson (2020), we decide
upon the priors given in table 2. Finally, openness, a calibrated value in Thorarins-
son (2020) dictating the influence of the world economy on the domestic economy;,
is set to 0.42, which suggests a mode of 0.57 for §,. However, in the benchmark
specification of Gali and Monacelli (2005), foreign output gap has no effect on the
domestic output gap.

3.1.2 Inflation

To determine the structure and priors of contemporaneous effects on inflation we
look to the New Keynesian Phillips curve as a starting point, thus assuming the
role of the aggregate supply curve. It’s given by

Ty = BaTiy1pe + Wamncy

where me; is the marginal cost at time ¢. Both Thorarinsson (2020), and Gali and
Monacelli (2005), indicate that in an open economy we can approximate marginal
cost with a linear combination of the domestic output gap, the foreign output
gap and the real exchange rate. We will, however, modify that representation by
insisting that import prices have a contemporaneous effect and that there is no
foreign contemporaneous effect that doesn’t act through import prices. This is in
the spirit of Matheson (2008) who argues that an appropriate model of the open-
economy New Keynesian Phillips curve is one which augments the corresponding
closed-economy curve with a variable capturing the tradable sector’s international
competitiveness, for which we employ import prices as a proxy. Batini et al. (2005)
note that import price inflation, conditional on the substitutability of imports, is

7



an indicator of external competitiveness. They stress further that import price
inflation exerts pressures on inflation through the real marginal cost insofar as
production inputs are imported. Moreover, this addition is motivated by the sig-
nificance of import prices in the forecast error variance of inflation in Thorarinsson
(2020). Finally, we augment the Phillips curve in an ad-hoc fashion by presuppos-
ing a contemporaneous effect of five year break-even inflation expectations, mZ.
This addition is in the spirit of Pétursson (2018) and is supported by multiple es-
timates of the expectation augmented Phillips curve in the literature, emphasizing
the importance of expectations in price formation.!® The inflation can thus be

represented as

Ty = BaTigape + oy + Cmpe + nemy + bl 1+ eny (10)

Employing our approximation for future values as we did before, we get
Ty = aﬂyt + <7r7TF,t + 777r7TtE + bﬂxtfl + gﬂ,t (11)

where reassigned coefficents have been multiplied by (1 — 3,x)~!. In the canonical
Phillips curve, (3, represents the discount factor, which in Thorarinsson (2020) is
assumed to be 0.995. Following the calibration of Gali and Monacelli (2005), we
center the priors of (;, n,, at zero. Baumeister and Hamilton (2018) cite Lubik and
Schorfheide (2004) in centering their prior for a, as 0.5. Leveraging information
from Thorarinsson (2020), and Gali and Monacelli (2005), we settle for a prior
with mode 0.3. The prior distributions for the Phillips curve are given in table 2.
Note that we can write equation (11) as

E | x *
Ye = Gu (T, TR, T 5 Uf s Te1) + €y

where g, is a functional and ¢}, = —&,;. It stands to reason that we should
interpret a positive deviation in ¢}, as a positive supply shock, implying that a
positive deviation in e, is a negative supply shock.

3.1.3 Interest rate

For the determinants of contemporaneous monetary policy response we assume a
Taylor type rule of the form

re=(1—p) (y + Brm) + bz + €y (12)

where b,x;_; is, as the reader should expect by now, a linear combination of lagged
values of all relevant variables and a constant. We adopt the specification of Taylor

13The break-even inflation is, however, only a proxy for households’ inflation expectations. See
Pétursson (2018) for a discussion on the applicability of such a proxy.



(1993), assuming «,. and 3, are a priori approximately 0.5 and 1.5, respectively.
For p, we follow Thorarinsson (2020) and Danielsson et al. (2019) in presuming
the prior is a beta distribution with mode 0.6 and standard deviation 0.0961. We
include p as a parameter, rather than setting priors on the parameters (1 — p)a,
and (1 — p)f, directly, since this imposes more constraints on the model. This,
however, is only the case if we adjust the priors for the lagged variables accordingly,
i.e. the prior on b is given by [0,...,0, p,0,...,0] where p is the parameter in front
of T—1.

3.1.4 Exchange rates

Let us define the real exchange rate, s;, as log (ft%> , where ¢, is the trade weighted
nominal exchange rate giving the home-currency price of one unit of foreign cur-
rency, P/ is the trade weighted foreign price level, and P, is the CPI price level.
The use of the uncovered interest rate parity, in it’s original form or an augmented
one, to model exchange rates has become omnipresent in New Keynesian models.
One version is derived in Thorarinsson (2020) to have the form

L ~ —~k ~x
sp = 0gSi1pe + (1 — 0g)s4-1 — 1 (7 — Toqaye) — (77 — (7Tt+1|t)] +blr, g+ ey

where we define 7, = r,—7, 7y =1 =7, T = m—7 and 7, = 7 —7*, and where 7
and 7} are time-varying natural rate of interests, and 7™ and 7* are inflation targets.
Using a similar argument as before we assume that a reasonable approximation is

* *
Ty = Crx + RpxTyy  St41 = Cs + KsSt

with ks = Kk = kK = 0.75. Clearly we can decompose €,,; into components
consisting of the mean zero time-varying natural interest rate differential and an
independent error disturbance, that is

Est =Tpy + €syt

where 7p; = (7} — T) — (7* — T), and €, captures the risk premium and other
stochastic factors. We interpret a positive change in €,; as an increase in the risk
premium on Icelandic assets, and a positive change in 7p; as an equilibrium in-
terest rate shock. Thus, the interpretation of a structural shock related directly
to the real exchange rate includes a risk premium shock and natural interest rate
differential shock. We have no mechanism to differentiate between these shocks
when observing ¢, +, which we subsequently refer to as an exchange rate shock. We
can write

St = —VsTt -+ ﬁsﬂ't + VST: — )\37'(';k + bs‘%tfl + ay (13)
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where, a priori, we have the relationships v, = B,67! = v, = A ! = 0.25(1 —
dsk)~!, which we collectively refer to as w,. From Thorarinsson (2020), we gather
that dg is centered around 0.6, implying that w, ~ 0.5. If, as in Gali and Monacelli
(2005), dg = 1, we get ws = 1. We set the mode of our prior for wy as 0.75. The
full prior distributions for vy, B, vs and Ay are given in table 2.

3.1.5 Import price inflation

Our choice of contemporaneous effects on import prices reflects whether or not we
assume local currency pricing. Keeping in line with our more empirical approach
we assume the possibility of local currency pricing while also allowing foreign cost
push effects. An advantage of this approach is that it allows us to determine the
extent to which local currency pricing, which is assumed in Thorarinsson (2020),
is present in Iceland. Being a hybrid model, we can use the conceptual paradigm
of Gordon’s triangle model (Gordon, 1988), using the domestic output gap to
represent aggregate demand pressures, and foreign price and real exchange rate as
supply side effects. Whence we get

Tpe = OpYs + 0psy + Apmy + bwfft—l + Exp (14)

It’s clear that a priori we expect the sign of the parameters impacting contempora-
neous explanatory variables’ effects to be positive. Assuming that demand effects
on import inflation are in line with demand effects on CPI inflation, we center ap
around 0.3. Viewing 7* and s as supply, or cost-push, effects we follow the speci-
fication in Thorarinsson (2020), and set modes of ép and Ap to 0.5. Signaling our
lack of confidence in these prior modes we allow relatively large second moments.
The prior distributions can be seen in table 2.

3.1.6 The complete specification of contemporaneous effects

Since we are not interested in structural aspects of the foreign economy, and con-
forming to the principle of parsimony, we assume that the foreign economy is
sufficiently represented, for our purposes, by a reduced VAR. We thus get the

10



following matrix of contemporaneous effects

1 B, % 0 0 0 -6, 0 0
—Qir 1 0 0 —Cr —0x 0 0 0
-1-py, —(1=p)3, 10 0 0 0 0 0
0 By 10 0 0 A —u
A= —Qp 0 0 —dp 1 0 0 —Ar 0
0 0 O 0 0 1 0 0 0
0 0 O 0 0 0 1 0 0
0 0 O 0 0 0 0 1 0
0 0 O 0 0 0 0 0 1
recalling that
Az = Bry g + &
and that z; = [ys, 7o, 74, S, Tre, Tee, Ui 765 1E] ®e1 = (244, ., 2i_,, ). Since

we employed a truncated distribution on selected parameters, we can, in what
follows, assume that all but (, and 7, are positive. The joint probability density
of A can be deduced from the individual specifications above as a multiple of the
individual densities. Furthermore, introducing sign restrictions, at horizon 0, in
the Bayesian context is equivalent to defining a prior probability density on the
coefficients of H = A~!. We can write H = H det(A)™' = A, from which it is
clear that det(A) changing signs, ceterus paribus, implies that there is a plausible
set of parameters which both contains elements inducing positively infinite effects
of structural shocks as well as negatively infinite. A most unfortunate result, not
to mention an improbable description of the economy. We thus want to restrict
the determinant to a sign.!* To determine whether det(A) is more reasonably
restricted to the negative or the positive we inspect the elements of H and use
economic theory to deduce the appropriate sign. The 0 horizon inflation impulse
in response to a negative supply shock is given by

h _ (1 _ p)arfyy
22 det(A)

By reasoned assumptions we have (1 — p), a;,y, > 0. In addition, theory suggests
that inflation increases as a response to such a shock. As a result, we require

14The determinant of A is given by

det<A) = ’VyaF(l - p)IBrCTr - 'VyBS(SF(l - P)OérQr + 'Yyaﬂ'(l - p)ﬁr
+ ’Yy(]- - p)aT + ﬂy‘;F%(l - p)aTCW - ﬁyaFCﬂ' - ﬁyaﬂ'
+057s(1 = p)BrGr — BsOrGr + 1

11



det(A) > 0. To achieve a desired sign restriction on a priori ambiguously signed
impulse, we thus need only restrict h; ;-'» We choose to restrict, h 2 < 0, inter-
preted as a negative output impulse as a response to a negative supply shock. We
would like hy 3 to be negative to secure a rational reaction to interest rates with re-
spect to international trade. Moreover, we want 51,7 to be positive, implying that,
contemporaneously, an unexpected increase in foreign demand affects domestic
exports positively, and consequently domestic output. Following the results from
Thorarinsson (2020), we posit that h; 3 is negative, i.e. that an interest rate shock
depresses output on impact. The effect of a monetary policy shock on interest
rates is ambiguous as is. To ensure that such a shock results in higher interest
rates we require 5373 to be positive. We force import prices to react non-negatively
to foreign markup shocks by requiring hs 8 to be non-negative. Lastly, we require
an import price inflation shock to be positively correlated to domestic inflation,
i.e. hys > 0. Note that hys = (7y(1 = p)a, +1)(r, and thus if we assume has > 0,
then that forces ¢ to be positive, via our previous assumptions on 7,, p, and a.
These requirements imply following sign restriction matrix*¢

(@)
<

(@)
3

Er

™
»

EF E€E &Eyx Epx
77

Yt
T

Tt

SGN(H) = | ™

7Tm,t

TEt

o o o o v ovw 4+ +

O O O O v v+ 4 9

o O o o v v 4+ +

o O+ O v o v+

o 4+ o o 4+ v v 0

+ oo o w4+ + oY
*

5
o
o
o

+
0
0
0

O O O D VY Y Y
S O O O

To achieve these restrictions we mimic Baumeister and Hamilton (2018) in defining
a new family of distributions which they refer to as asymmetric t-distributions. For
a standard Student’s t distribution, ff = t;1(0), with f degrees of freedom, we
define a distribution, Yy¢, (1) (h), the probability density of which, evaluated at

h, is given by:
et =t (7)o ()

15We abuse the meaning of a restriction slightly since our restrictions can be soft, i.e. that
which is supposedly restricted can have a non-zero probability in this setup.

16Note that our explicit restrictions are implicit restrictions on the following entries:
h3,9,h3.5,h3.4,h2,9,h2 5,h2 4,k 3.
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where ® is cumulative distribution function of the standard normal distribution,
¢ is a scaling parameter, p is a location parameter, y is shape parameter, and k
is defined such that Yy¢.(u) (-) has unit measure. Moreover, for each prior we
specify a weight w; j, which determines each priors weight in the target function
qu, which determines the acceptance probability in our Metropolis-Hasting Markov
chain Monte Carlo algorithm and is defined in section 4. We set w; ; = 100 in all
cases. A prior on E’j is equivalent to a joint prior on a subset of elements from A.
More specifically, it is the joint prior on the following expressions:

El,Z = ’Yy(l p)Br — by
hig = G (BsOpyy + BySrys) — Ty
g = 6, [Geor (vs(1 = p) B, = B) + 1]
has = Cr (7y(1 = )y + 1)
haz = o (BOp + apBy) + axf, — 1
hag = Crap (Bsvy — By¥s) + nfBsyy +7s (1 — anf3y)
hsg = —[(1 = p)vy (55X = Ar) (@ + )]
— (1 — axBy) dpAs + (arxfy — 1) AF]

Table 3 gives the parametrization of prior densities for H. To determine the exact
parameters of the densities we sample vectors from the joint prior density of A,
examine the moments of EM and set f,¢ and z such that we minimally deviate from
these moments while also introducing asymmetry in the distribution to increase
the likelihood of getting the designated sign on the impulse responses at horizon

h = 0.
The full model is given by

—_
ot

Yr = Py — Yy + O0yy; +byriq ey,

—_
(@)

T = QY + Gy + 777r7T;LJ +brri_1 + ey
re = (1 —=poyy + (1 — p)Bpmy +brxi_ + €y
= BT — Yo7y — AT} + vsTy + by + ey

— =
o

Tre = QpYy + 0ps; + Apm, +bpri_1 + ey

]
)

TEt = bpTi—1 + Ry

e e e e e e N T
DO —
— Nej

RN NI N NN SN SN

[\]
w

*
Yy = by*Itfl + 5y*,t

DO
[\

*
Ty = bye 1Ty 4 Exnt

*
r{ =bpxig ey
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3.2 Priors for D|A

We mimic Baumeister and Hamilton (2015) in choosing priors for the covariance
matrix of u;, by setting the prior as a product of inverse-gamma distributions, the
natural conjugate prior. We thus have p(D|A) = 1" ;p(di;|A), where

k1 =1y ap g1

p(dY) = tan(dii )" exp(—midy; ") if d; >.O
0 otherwise

Let & be the variance matrix of univariate autoregressions for the elements of y;,

then we set the mean of the prior for d;; as ﬁ The weight of the prior is set as

R; = 2.17

3.3 Priors for c|A, D

We define the conditional prior for ¢ by specifying a non-controversial prior for B,
which we relate to c via our linear constraint. Following Baumeister and Hamilton,
we define the conditional probability density function of the prior for B, given A
and D, as

where ¢(b;; m;, d;;, M;) is the pdf of a multivariate Gaussian distribution with
mean m; and variance d;M;, evaluated at b;. In particular, the prior is given by

p(bi|4, D) = (2m)% det(dy; M;) "2 exp [—0.5m(b;, m;, di; M;)] (24)

where
m(z,y, F) = (z —y)F(z — y)
is the squared Mahalanobis distance, defined for an arbitrary n-dimensional vector
pair z,y and an arbitrary (n X n) invertible matrix F. More succinctly, we can
write
B ~ N(m, M) (25)

where 8 = vec(B'), m = [m/,...,m}, ..., m/,]’, and M is a block diagonal matrix

given by the direct sum M = @} ,d;;M,;. Recall that our base model, given by
equation (1) is constrained by f = Re, where R is given by the direct sum R =
@ | R;, where b; = Ri¢;, and ¢ = [}, ..., c,]". As illuminated by the discussion in
Liitkepohl (2005) there exists a matrix S, for a given R satisfying 5 = Re, such
that

Svec(B) = ¢*

17Since the prior mean of d;-l is given by 2¢, this specification uniquely determines 7; and x;.
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In our case where linear restrictions are those of forcing selected parameters to
be zero, we have R' = S, ¢* = ¢, and S- R = ]dim(c),lg as the reader can check.
Furthermore, we can identify S; = R;. Thus we can write

C; ~ N(Simia SidiiMiSD = N(mm, diiMc,i)

or

¢~ N(Sm,SMS’) = N(m,, M,)

and p(c|A, D) = [];_, p(ci|A, D). In accordance with Baumeister and Hamilton
(2018) we set m; = 0.75Jga; for all i except the one relating to the interest rate,
where
Joxop = [Zo Ogxo(p-1)+1]

implying that we hesitantly anticipate that at time ¢, there is little useful informa-
tion beyond ¢ — 1. For the equation governing the evolution of interest rates we set
the prior such that p is the prior coefficient for a lagged value of the interest rate,
while others are set to 0. Finally, M, is the confidence we have in our priors for B.
Conforming with Baumeister and Hamilton (2015), who decide M; in accordance

with the Minnesota priors, we calibrate the hyperparameters as A\ = 0.1, A\; = 1,
)\2 - 100.19

3.3.1 Pseudo Long run restrictions and SVMA representation

Consider again the model
AZt = B‘Ylt,l + Uy

Assume that B = [By,..., By, Bo], -1 = [#{_1,...,2_,,1]', and u, is a differen-
tiable martingale difference sequence. We can rewrite the model as

Az = By + Bizia + -+ Bpzpp +

Assume that A is invertible and define ®(L) = I, — &L — --- — ®,LP, where
®; = A7'B; and Bj, = A™'B;. We then have the representation

(I)(L)Zt = B(l) + &
where e, = A~'y,. Define further ©(L) = > 77 ©,;L" which satisfies

O(L)®(L) = I,

18We denote by dim(c) the dimension of the underlying space c lives in, i.e. ¢ € RUm(€),
19See Baumeister and Hamilton (2018) and Liitkepohl (2005, p. 225) for details.
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Assuming the existence of O(L), this implies a SVMA representation:
2 =p+0O(L)e
Where p = O(1)B{. Comparing coefficients of the expression
(©0+O1L4-+6O;L" +...) ([, = L—- =P, LP) =1,

we get

=1

J=1

®i - Z @Z’_jA_lBj
j=1
and Bj = 0 for j > p. Thus existence of O(L) is secured. The impulse response
function (IRF) at horizon h of the ith element of variable z, to the jth shock, wu; ;,
of unit size, is defined as

5Zi,t+h _ 5Zi,t+h duy _ (@hA_l)

5uj,t 5Ut 5ut,j

Let Y; be such that AY; = z; and define the long run impact of a shock wu; by

h
lim o (Yign — Y:) = lim = lim Z@ifH =0(1)A!

h—o0 (5Ut h—o0 4 P (Sut h—o0 4 5
1= 1=

h
02444

By definition ©(1) = ®(1)~! and we get

}}i_{god%t(ﬁm—yt) =Ly =P = =) AT = (A=B, —--- = B,
Where we used that (X;X5)™' = X;'X; ! and ®; = A~'B;, and assumed ap-
propriate invertibility. Long run restrictions are thus restrictions on the matrix
Q= (A—B;—---— B,)"!. Assuming that no shock has a non-zero cumulative
effect on GDP, other than a supply shock, we get restrictions on the elements of
®(1) such that?*:2!

p
0=¢ =) byj, i€R (26)
j=1

20This follows from the facts that the inverse can be calculated from elementary matrix
operations and that a row with a single element will remain a row with a single element
in such a procedure. For an arbitrary matrix with the ¢-th row consisting of the vector
[0,...,0,24,0,...,0], where z is the k-th element, the k-th row of the inverse will consist
of a vector [0,...,0,2F,0,...,0].

21 An element in the k-th row, i-th column of the matrix B; is written by ; ;.

16



where R is a set of restriction indices. For our purposes, we set R = {2,...,n}.
Next, we define a prior on ) 2, by, ;, for i € R, as

p
Z ba,ij| A ~ N(Q{Z diiV;)
j=1

where V; is the confidence we have in each long run restriction. Using Theil’s
mixed estimation method, we can define, for appropriate i’s, a stochastic linear
restriction which can depend on A and D, by

r, = szz + U;

where v; ~ N(0,d;;V;), allowing us to extend our observation vector with » ", h;
pseudo observations, where h; is the dimension of r;. We augment our observables
by adding appropriately

Tgpv,i = R;P\/ﬂbZ

where Py is the Cholesky decomposition of V;. Following Baumeister and Hamil-
ton (2018) we set V; = 0.1. Heed, however, that in our representation output is
observed as a percentage deviation from potential output. As such, it’s discrete
integral is 1(0). Long run restrictions should thus, in theory, not impact identifica-
tion. In practice, however, using long run restriction imposes stricter identification
which reduces variance of posteriors. The proper interpretation of the restrictions
is that the cumulative effects of the aforementioned shocks on the output gap is
null.

4 Methodology

We employ a slightly modified version of the Baumeister-Hamilton algorithm, ad-
justed for Icelandic idiosyncrasies. Namely we impose that the world economy is
not affected at all by domestic shocks. Proposition 1, which is virtually identical to
that of Baumeister and Hamilton (2015), implies that the BH algorithm produces
the desired results.??

Proposition 1. Let us assume that z; evolves according to equation (1), and the
relevant quantities have properties as previously stated. Let us denote the priors
for ¢ and d;* by ¢(c;me, M) and v(d;;'; ki, 7;), respectively. Then the posterior of
A satisfies

Ki

Fi T (27)

p(A) det(AQA") 2 f[ det (M)
1_[;'1:1(2%7—1'*)/{z i=1 det(MC,i)

22The proof of Proposition 1 is given in the Mathematical appendix.

p(AlYr) o

N=| N
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where k¥ = k; + L, 7F =7 + % Moreover, the posterior for c is given by

27 i
¢(C; mza Mc*) = 1¢(CZ, m M* ) (28)

CZ’

LooN-1 . NS .
where Mm; = <X{Xi> (X{2i>, M., = (X{XZ) , and X; and Z; are defined as

z1a; T\ R;
/ /
za; ~ ) R;
3 t t+th
(T+g:x1) : (T+4qixq:) :
2ha; xR,
/ /
_Pc,imc,i_ Pci i

The posterior of the elements of D, d:;*
implied target function is given by

is given by v(d;'; k3, 7). Finally, the

i 7 1 7 l’

q(A) =logp(A) + glog[det(AQA’)]

- Z (/@ ) log K >] + Zm log 7; (30)
n Z M| I(k; + L)

+ log
If M, and k* don’t depend on A, then we get

lo
o8 \Mm T(:)

g(A) = log p(A) + glog[det(AQA’)] (31)

— Z (k; log 1" — K;log T;)

i=1

]

Note that the priors on long run behaviour are omitted in the proposition. Since
such priors, via Theil’s mixed estimator, can be viewed as pseudo-observations,
the proposition holds with the appropriate changes to z; and X;. Furthermore,
appending the priors for the impact matrix H to the target function in Proposition
1 gives the target function we employ in our algorithm, namely

au(A) = q(A)+ D wijlog (Y (H)) (32)
(1,3)ERH

where Y(; j)(H) is a generalized prior for the impact of shock j on variable 7 at
horizon h = 0, Ry is a set of indices and w; ; are weights.
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5 Results

We use the BSVAR model described above, estimated via an augmented version
of the Baumeister and Hamilton (2015) algorithm, to produce impulse responses,
forecast error variance decompositions and historical variance decompositions. It
is evident from Figures 1 and 2, depicting prior and posterior densities of parmeters
influencing contemporaneous effects, that, in general, the data is informative on
the posteriors. In almost all cases the variance decreases and the mode shifts. The
mean and standard deviation of the posteriors can be found in Table 4. Figure
3 displays the cumulative impulse response functions of inflation to structural
shocks. Of note here, contrary to results of Thorarinsson (2020), is the marked
difference in the effect of foreign price inflation and import price inflation. In
fact, when the transitory effects have died down, the cumulative impact of foreign
price inflation shock is roughly an order of magnitude bigger than the impact
of import price inflation. This implies that import price inflation contains little
information for domestic prices when we adjust for foreign price inflation. Evidence
of this can be seen clearly in figure 5, where the ratio of the impulse response of
inflation to €, and ¢, is shown. In addition, from figure 4, which displays
the cumulative impulse responses of import inflation, we see that the cumulative
effect of foreign shocks is comparatively large. In particular the cost-push effect
dominates import price formation. This is further supported by our estimate of
the contemporaneous cost-push effect, \p, with a posterior distribution which is
strictly positive, has a mean around unity, and implies that the effect of world price
on import inflation is considerable. A similar story is told by the forecast error
variance decomposition, where foreign effects make up 20%, 77% and 84% percent
of the deviation in inflation at horizons 4, 16, and 32 quarters, respectively.?® The
average explanation power of the shocks on deviations in inflation can be seen
in table 5. Over the 8 year horizon, foreign demand constitutes 49.2%, foreign
price inflation 13.6%, real exchange rates 13.1%, of inflation variance, on average.
Our findings strongly suggest that foreign events dominate domestic ones in price
decisions and that inflation dynamics in Iceland are heavily influenced by foreign
developments in general.?* In particular, and as can be seen in figure 6, medium
and long term dynamics are predominantly determined by evolution of the foreign
economy while short term dynamics are dominated by domestic effects. Observe,
however, that this is partially by design since strictly foreign variables are excluded
from contemporaneous effects on inflation. The comparison to Thorarinsson (2020)
is slightly compromised, however, by the fact that they assume local currency

23 A more detailed breakdown w.r.t horizons can be seen in figure 6.
24This is in line with findings report in Box 2 of the Central Bank of Iceland’s fourth issue of
the Monetary bulletin in 2015.
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pricing. A caveat to our findings that bears mentioning is that the global financial
crisis is included in the data set, and as figures 8, 9, and 10 indicate, the model
seems to deem foreign shocks to be responsible for the rise and fall of inflation
during that period.?®> Therefore, presupposing that the results are representative
of the current state of the Icelandic economy might overstate the impact of foreign
shocks. Moreover, by inspection we deduce that world demand has been more
instrumental in price formation before, and during, the global financial crisis than
after. This is harmoneous with the findings of Breedon et al. (2021) who observe
that information content of trading activity and sensitivity to macro news in the
FX market are heavily affected by the capital controls put in effect in Iceland in
the wake of the global financial crisis.

6 Robustness

To determine to what extent the inclusion of the global financial crisis is driving
our results we re-estimate the same model without modification over the period
2011:Q1-2019Q4, altering the time frame of the data and excluding the global
financial crisis. As can be seen in figure 7, foreign effects are still dominant in this
period. However, now foreign price inflation explains 58% of forecast variance on
average over 8 years, while world demand explains merely 8%. The estimate over
this period is qualitatively similar but the data much less informative. This is to
be expected with a smaller number of observations. As a result, caution should be
taken when drawing conclusions from this comparison estimate.
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7 Mathematical appendix

7.1 Proof of proposition 1

The proof strategy is to write p(Z7, A, ¢, D) in two different ways. From there we
can derive an expression which is proportional to p(A|Zr). Assuming that A is
non-singular, the likelihood of Y7, can be calculated from equation (3) as

L(-|Z) = (2m)7 =" det() 7= [ [ exp {—%m(zt, A7 B4, Q) (33)
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subject to the constraint that b; = R;c;. By assumption we have Q = A~1D(A™1)
and it’s well known that the Mahalanobis distance yields the following relationship

m(Ay, Az, F) = m(y,z, AT F(A™'))
We thus get

L(-|Z) = (2m)" =" det(A"'D(A™Y)) 7= [ ] exp {—%m(Azt, Baz,_1,D)|  (34)

It is further a well known property of the Mahalanobis distance that for a diagonal
matrix D, with diagonal elements d;;, we can write

(alzy — biwy_1)?
dy;

m(Ayt, By, D) = Z

=1

Where a and b, are row vectors of A and B, respectively. Using det(A'D(A™1)) =
det(A)~?det(D) and rearranging, we get

L(|Y) = (27) % det(D)" 7| det(A |THeXp[ 3 (0iz — b””’"t 1)] (35)

t=1

Inserting the linear constraint, b; = R;c;, or equivalently 0, = ¢, R, = ..S; yields

T _ Q. 2
L(|Y) = (27) % det(D)"7 | det(A \THexp[ Z (0iz ;fﬁt—”] (36)

Recall that P.; denotes the Cholesky factor of M., satistying the property that
M(;il = P.;P.;. Defining X} = P/, and y* = P, m_;, we can write the prior for ¢
as

p(c|A, D) = (277)_% det(d,-,-Mcvi)_% exp [ (yi — XFe;) (yf — Xz-*ci)} (37)

di;2

With the goal of combining the likelihood and the prior, let us now define a
(T'+ ¢q;) x 1 vector z; and (T + ¢;) X ¢; matrix X; as

[ z1a; | -x’l R; ]
o= zja; 7 5= T, R;
(T+qix1) : (T+4ixqi)
2ha; xRy
| P e | | Pl ]
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where ¢; < k is the dimension of ¢;. Conjoining equations (36) and (37) we get

p(Z|A, ¢, D)p(c|A, D) = R - det(D)~=| det(A)|" (38)
- 1 ~7; X@ Z7I .
. (H det(diiMqi)_? exp [_m(z ; C qz)])
i=1 dii2
Tt 4, .
where N = (27)"— 2 is a constant since we assume that 7', n, and ¢;, for all

1, are predeterrmned Without loss of efficiency, the system Z = Xe, where Z is
the collection of Z’s and X is the collect of X;’s, can be estimated line by line,
giving us the estimate

~ ~N\N—1
Using the fact that z; — szzz is orthogonal to )N(i, we can write?®

(Zz: X Cl? ) Cz ( - Cl) (Mc*,z)il(m:,z - Ci)

~ ~\—1 ~ ~
where M, = (X{Xi) and ¢; = (5 — X;m*,)'(5 — X;m?,). Equation (38)

c,i ¢t

becomes

p(Y|A, ¢, D)p(c|A, D) = Rdet(D)~ | det(A)[T (H det(diiMC,z’)é> (39)

=1
ﬁ G+ (m); —c;)' (M) M (m}; — c;)
. eX J—
i=1 g 2d;;

Recall that the conditional prior for D|A is given by

p(D|A) = Hp(dn-!A)

where

{i(dfl)ﬁz exp(—7idy;t), for d;' >0

INCH R i

p(d;") =
(") 0, otherwise

We denote this density with v(d;'; %;, 7;) and refer to it as the gamma density
with shape r; and rate 7;, evaluated at d;;'. Further recall that we denote the
probability density function of a multivariate normal distribution with mean ;2 and
covariance matrix X, evaluated at z, with ¢(x; u, ). Now multiplying equation

26See Baumeister and Hamilton (2014) for details.
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(39) with the conditional prior for D|A and the prior for A we get and expression
for p(¥r, A, ¢, D) = p(A)P(D|A)p(Y| A, ¢, D)p(c|A, D):

o7 N _
p(Yr, A, ¢, D) = Rp(A)| det(A)[! H F(lﬁ) (diil) o eXp(_Tidiil)

i=1
L
JJda? [ di? det(M.,;)~=
i=1 i=1
- [ G+ (mf; —c;)(M7;) "N (mf; —c;)
~Hexp — : : :

2d;;
=1
_ T - A 1
= Ryp(A)[ det(A)] 11 T (dig )™ exp(—7dy;")
Lo a
H dm’ ’ H du ? det(MC Z)_%
i=1 i=1
: Hexp(—;; JdF det(M,)3 ey mi,, di M)
ey ii
where Ny = N - (271')# = (2%)*%. Define 7 = 7; + % and k7 = K; + . We
can further rewrite the rightmost side of the last equation as
PV, A, ¢, D) = Rop(A)| det( AT [ o (@51 exp(—rdi)
P F(Iil) 1 1

: f[ d;? f[ det(M,;) "
=1 =1

[ exp(rids") exp(—77dy") det(M)2 ¢(ciymy,, dii MY,)

c,i)
i=1
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and finally

p(Yr, A, ¢, D) = Rop(A)| det(A)|T
n Tfi + . 11
ki — —7*d=
H F(HZ)( ) eXp( TZ 1 )
=1
" det 2
) H et(M )l(b(Ci;mc,iudiiMc*i)
oy det(M,;)2 ’
m det (M, % T (k)
— N det T l 1 - - 40
2p | | Hdet EF(/‘%)( ) ( )

' H’y<du1’ ’iMTl*)qs(c“mcwd M* )

We can alternatively decompose p(Yr, A, ¢, D) as
p(YT7 A7 ¢, D) - p(YT)p<A|YT)p(D|A7 YT)p(C|A7 D7 YT)

By inspection it is clear that we can associate [ [\, ¢(ci; me s, dii Ms;) with p(c|A, D, Yr),
and [[;_, v(d; ; kf, 77) with p(D|A, Yr). Whence we deduce that

[ det( iﬁ 7t rw)
and further that
p(A) det(AQANT oy det(Mz)2 75
p(A’YT) X H?:1(%Tz*) H det( )% F(ng)r(ﬁ ) (42)

where we have multiplied equation (41) with JT(£)" det(Q) 2, which does not
affect our result in equation (42) since the term can be considered a constant w.r.t
the elements of A. We have shown that the posterior of A can be sampled without
sampling D and c¢. Furthermore, it is clear from the proof that if the posterior
of A is known, we can calculate the posteriors of D and ¢. Thus, taking the log
of the right hand side of the last equation, we get our target function less impact
matrix priors
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T L2
q(A) =logp(A) + = 5 log[det( AQA Z K} log | 7 T)
- - ci| F(Kﬁ)
l . _ 1 ) 1 7
+;/ﬂ ogn+; 5 {og L] + log F(/{i)}
= T N A - T G\ 2
= logp(A) + 3 log[det(AQA")] Z (/{z + 5) log |:<TZ + 5) T}

+Z/@logn+z

T
=logp(A) + 3 log[det (AQA")]

_ n <mi+g>log{(2ﬂ )1+Zmogn

7
*
|Mc,i|

F(/‘iz)

+10

log

(43)

Note that in our setup M*

C’L7

the target function becomes

M. ;,k;, and k] don’t depend on A, and in that case

q(A) =logp(A) + g log[det(AQA")] (44)

— Z (ki log 7" — k;logT;) (45)

7.2 Rewriting a linear model with Kronecker product and
a linear constraint

Recall that applying the vec operator on a n X k matrix results in a nk x 1 column
vector comprised of stacked column vectors. The operator has the property that

vec(CF) = (F' @ I,)vec(C) = (I; @ C')vec(F)

where C'is a (n x k) matrix and F'is a (k x [) matrix. Stacking the vectors in the
original DSM model:
Azt = th + Ut (46)

we get
AZ =BX+U
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where Ais (nxn), Zis (n xT), Bis (n x k), Xis (kxT), and U is (n x T).
Employing the Kronecker product we can thus write

(Ir ® A)z = (X' ® I,,) vec(B) +u

where z = vec(Z) and u = vec(U). Using the commutation matrix we lastly get

(Ir® Az = (X' ® I,,) Ric +u (47)

8 Table appendix

Table 1: A list of model variables.

Model variables

Varible name Description
Y Output gap
T Inflation
r Nominal interest rate
S Log of the real exchange rate
¥ Import price inflation
TE 5 year break-even inflation expectations
y* Trade weighted foreign output gap
* Trade weighted foreign inflation
r* Trade weighted foreign interest rates

Table 2: Prior distributions of parameters inducing contemporaneous effects.

Prior distributions of A

Coefficients Distributions

By t30.5(0.35)
Yy t;0.5(0~5)
0, t305(0.2)

(Continued on next page)
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Table 2: (continued)

Prior distributions of A

Coefficients  Distributions
Ol t§0.5(0.30)
Cr t5.0.5(0.00)
. t5.0.5(0.00)
Q. t§0‘4 0.50)
o 75?{0.4 1.50)
p Beta(15,10)
Bs t30.5(0.56)
s t3,0.5(0-75)
As t505(0.56)
Vg t;0.5(0.75)
ap t31(0.3)

op t31(0.5)

Ap t31(0.5)

Table 3: Prior distributions of elements of the impact matrix.

Prior distributions of H

Coefficients Distributions
det(A) T59290(1)

hi T32-20(—0.1)
hi3 Y39 —20(—0.6)
hiz T31.20(0.55)
has T31,20(0.1)
hss Y3,2,20(0.7)

hag Y32 10(—0.85)
hss T3320(0.23)
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Table 4: Posteriors of dynamic parameters

Posterior

Mean Stdev.

B, 0089  0.0534
v 0.626  0.1105
6, 0529  0.0651
a; 0134 0.0910
(- 0093  0.0113
ne 0070 0.1122
a, 0988  0.3052
B, 1119  0.2657
B, 0497  0.2899
v 0876  0.1596
A, 0552  0.3083
ve 0.671  0.4483
ap 0775  0.4596
Sp  1.007  0.1042
Ap 0.857  0.3316
p 0625  0.0808

Table 5: Average forecast variance decomposition contribution, over 8 years, in
percent.

Shocks

Ey Exr & €s  Emm Emp  Eyr  Emr  Epx

T~ 42 94 08 131 63 20 492 136 1.5
y 392 6.0 55 213 63 81 74 54 09
r 119 20 58 19 1.1 119 615 25 15
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9 Figure appendix

9.1 Prior and posterior densities
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Figure 1: Prior and posterior densities of contemporaneous parameters. The
red line represents the prior density and the blue area the posterior density.
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n

Figure 2: Prior and posterior densities of contemporaneous parameters. The
red line represents the prior density and the blue area the posterior density.
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9.2 Impulse response functions

Response of = to + demand

Response of  to + exchange rate

Response of 7 to + world demand

Response of r to - supply

Response of 7 to + monetary

Response of = to + import price

Response of  to + inflation

Response of  to + world price

Response of 7 to +

Figure 3: Cumulative impulse response functions of inflation. Blue solid line is

the median and the shaded area is the 68% credibility interval.
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Response of T to + demand Response of T to - supply

b S A S o d s o

Response of T to + exchange rate Response of T to + import price

Response of 7_ to + world demand Response of = to + world price
m m

Response of T to ‘monetary

Response of = to + inflation expectations(5y)

Response of 10+ world interest rates

Figure 4: Cumulative impulse response functions of import inflation. Blue solid
line is the median and the shaded area is the 68% credibility interval.
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Ratio of the response in inflation to shocks in world price and import price

9 T I

Figure 5: Ratio of the median impulse responses of inflation to 7* and 7,,.
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9.3 Forecast variance Decomposition

Variance decomposition of variable:pi

L2 T T

Figure 6: Forecast variance decomposition of inflation. Blue is a demand shock,
orange is a supply shock, yellow is an interest rate shock, purple is an exchange
rate shock, green is import inflation shock, light blue is inflation expectations
shock, red is a foreign demand shock, dark blue is foreign price shock, dark
orange is a foreign interest rate shock.
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Variance ition of variable:pi

Figure 7: Forecast variance decomposition of inflation 2011Q1:2019:Q4. Blue
columns indicate domestic factors. Orange columns are foreign factors.
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9.4 Historical variance decomposition

Historical effect of + world demand shocks on
I

1995 2000 2005 2010 2015

Figure 8: Red dashed line is actual values of inflation gap from it’s mean. Blue
solid line is the estimated contribution of world demand. Shaded area is the 68%
posterior credibility region.
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Historical effect of + world price shocks on =
I

1995 2000 2005 2010 2015

Figure 9: Red dashed line is actual values of inflation gap from it’s mean. Blue
solid line is the estimated contribution of world price. Shaded area is the 68%
posterior credibility region.
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Historical effect of + exchange rate shocks on =
I

1995 2000 2005 2010 2015

Figure 10: Red dashed line is actual values of inflation gap from it’s mean.
Blue solid line is the estimated contribution of exchange rates. Shaded area is
the 68% posterior credibility region.
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